Dechlorination of trichloroethylene in aqueous solution by noble metal-modified iron.

نویسندگان

  • Chin Jung Lin
  • Shang Lien Lo
  • Ya Hsuan Liou
چکیده

Bimetallic particles are extremely interesting in accelerating the dechlorination of chlorinated organics. Four noble metals (Pd, Pt, Ru and Au), separately deposited onto the iron surface through a spontaneous redox process, promoted the TCE dechlorination rate, and the catalytic activity of the noble metal followed the order of Pd>>Ru>Pt>Au. This order was found to be dependent on the concentrations of adsorbed atomic hydrogen, indicating that the initial reaction was cathodically controlled. Little difference in the distribution of the chlorinated products for the four catalysts (cis-DCE: 51%; 1,1-DCE: 27%; trans-DCE: 15% and VC: 7%) was observed. The chlorinated by-products accumulated in both Pt/Fe and Au/Fe (10.3% and 2.5% of the transformed TCE, respectively), but did not accumulate in Pd/Fe and Ru/Fe. Ru/Fe was further examined as an economical alternative to Pd/Fe. The 1.5% Ru/Fe was found to completely degrade TCE within 80 min. Considering the expense, the yield of chlorinated products and the lifetime of a reductive material, Ru provides a potential alternative to Pd as a catalyst in practical applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adsorption Efficiency of Iron Modified Carbons for Removal of Pb(II) Ions from Aqueous Solution

Abstract Introduction: The Lead causes severe damage to several systems of the body, especially to bony tissues. Until now, several low-cost biosorbents have been studied for removal of heavy metal ions from aqueous solutions. In the present study, carbonized pomegranate peels modified with Fe2+ and Fe3+ ions and then it was investigated for removal of Pb(II) ions from aqueous solution. ...

متن کامل

Iron oxide nanoparticle synthesis in aqueous and membrane systems for oxidative degradation of trichloroethylene from water

The potential for using hydroxyl radical (OH) reactions catalyzed by iron oxide nanoparticles (NPs) to remediate toxic organic compounds was investigated. Iron oxide NPs were synthesized by controlled oxidation of iron NPs prior to their use for contaminant oxidation (by H2O2 addition) at nearneutral pH values. Cross-linked polyacrylic acid (PAA) functionalized polyvinylidene fluoride (PVDF) mi...

متن کامل

Removal of Cd (II) in Water Samples Using Modified Magnetic Iron Oxide Nanoparticle

Background: Heavy metals, even at low concentrations, are harmful to human health and environment. Cadmium as a heavy metal is highly toxic and can cause serious threat to living organisms. This research was designed to evaluate the adsorption potential of modified magnetic iron nanoparticles by 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol ligand for the removal of cadmium ions from water solu...

متن کامل

Abiotic reductive dechlorination of chlorinated ethylenes by iron-bearing phyllosilicates.

Abiotic reductive dechlorination of chlorinated ethylenes (tetrachloroethylene (PCE), trichloroethylene (TCE), cis-dichloroethylene (c-DCE), and vinylchloride (VC)) by iron-bearing phyllosilicates (biotite, vermiculite, and montmorillonite) was characterized to obtain better understanding of the behavior of these contaminants in systems undergoing remediation by natural attenuation and redox ma...

متن کامل

and their application to reduce TCE in water

Zero-valent iron is well known for the reductive dechlorination of chlorinated organics such as trichloroethylene (TCE). The activity of iron for this reaction is greatly enhanced when iron is in the form of nanoparticles. However application of these nanoparticles in fixed-bed columns, in-situ reactive barriers and in similar flow-through applications is not possible due to extremely high pres...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of hazardous materials

دوره 116 3  شماره 

صفحات  -

تاریخ انتشار 2004