MRI-based attenuation correction for PET/MRI using ultrashort echo time sequences.
نویسندگان
چکیده
UNLABELLED One of the challenges in PET/MRI is the derivation of an attenuation map to correct the PET image for attenuation. Different methods have been suggested for deriving the attenuation map from an MR image. Because the low signal intensity of cortical bone on images acquired with conventional MRI sequences makes it difficult to detect this tissue type, these methods rely on some sort of anatomic precondition to predict the attenuation map, raising the question of whether these methods will be usable in the clinic when patients may exhibit anatomic abnormalities. METHODS We propose the use of the transverse relaxation rate, derived from images acquired with an ultrashort echo time sequence to classify the voxels into 1 of 3 tissue classes (bone, soft tissue, or air), without making any assumptions on patient anatomy. Each voxel is assigned a linear attenuation coefficient corresponding to its tissue class. A reference CT scan is used to determine the voxel-by-voxel accuracy of the proposed method. The overall accuracy of the MRI-based attenuation correction is evaluated using a method that takes into account the nonlocal effects of attenuation correction. RESULTS As a proof of concept, the head of a pig was used as a phantom for imaging. The new method yielded a correct tissue classification in 90% of the voxels. Five human brain PET/CT and MRI datasets were also processed, yielding slightly worse voxel-by-voxel performance, compared to a CT-derived attenuation map. The PET datasets were reconstructed using the segmented MRI attenuation map derived with the new method, and the resulting images were compared with segmented CT-based attenuation correction. An average error of around 5% was found in the brain. CONCLUSION The feasibility of using the transverse relaxation rate map derived from ultrashort echo time MR images for the estimation of the attenuation map was shown on phantom and clinical brain data. The results indicate that the new method, compared with CT-based attenuation correction, yields clinically acceptable errors. The proposed method does not make any assumptions about patient anatomy and could therefore also be used in cases in which anatomic abnormalities are present.
منابع مشابه
MRI-based attenuation correction for hybrid PET/MRI systems: a 4-class tissue segmentation technique using a combined ultrashort-echo-time/Dixon MRI sequence.
UNLABELLED Accurate γ-photon attenuation correction (AC) is essential for quantitative PET/MRI as there is no simple relation between MR image intensity and attenuation coefficients. Attenuation maps (μ-maps) can be derived by segmenting MR images and assigning attenuation coefficients to the compartments. Ultrashort-echo-time (UTE) sequences have been used to separate cortical bone and air, an...
متن کاملMRI-Based Attenuation Correction for PET/MRI Using Multiphase Level-Set Method.
UNLABELLED Inaccuracy in MR image-based attenuation correction (MR-AC) leads to errors in quantification and the misinterpretation of lesions in brain PET/MRI studies. To resolve this problem, we proposed an improved ultrashort echo time MR-AC method that was based on a multiphase level-set algorithm with main magnetic field (B0) inhomogeneity correction. We also assessed the feasibility of thi...
متن کاملFeasibility of MRI attenuation correction in cardiac FDG-PET
Background Simultaneous acquisition PET-MRI is a new technology that has the potential to significantly impact diagnostic patient care. Cardiac imaging using PET-MRI offers high signal resolution MRI images superimposed on PET metabolic functional assessment. Specifically, 18Ffluorodeoxyglucose (FDG) PET-MR has the potential to provide both anatomic scar tissue evaluation and information regard...
متن کاملMR-based attenuation correction using ultrashort-echo-time pulse sequences in dementia patients.
UNLABELLED Attenuation correction (AC) is a critical requirement for quantitative PET reconstruction. Accounting for bone information in the attenuation map (μ map) is of paramount importance for accurate brain PET quantification. However, to measure the signal from bone structures represents a challenging task in MR. Recent (18)F-FDG PET/MR studies showed quantitative bias for the assessment o...
متن کاملAttenuation Correction Synthesis for Hybrid PET-MR Scanners
The combination of functional and anatomical imaging technologies such as Positron Emission Tomography (PET) and Computed Tomography (CT) has shown its value in the preclinical and clinical fields. In PET/CT hybrid acquisition systems, CT-derived attenuation maps enable a more accurate PET reconstruction. However, CT provides only very limited soft-tissue contrast and exposes the patient to an ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of nuclear medicine : official publication, Society of Nuclear Medicine
دوره 51 5 شماره
صفحات -
تاریخ انتشار 2010