Measurable 3-colorings of Acyclic Graphs

نویسندگان

  • CLINTON T. CONLEY
  • BENJAMIN D. MILLER
چکیده

This is the first of two lectures on measurable chromatic numbers given in June 2010 at the University of Barcelona. Our main result here is that acyclic locally finite analytic graphs on Polish spaces admit Baire measurable 3-colorings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Negative results on acyclic improper colorings

Raspaud and Sopena showed that the oriented chromatic number of a graph with acyclic chromatic number k is at most k2. We prove that this bound is tight for k ≥ 3. We also consider acyclic improper colorings on planar graphs and partial ktrees. Finally, we show that some improper and/or acyclic colorings are NP-complete on restricted subclasses of planar graphs, in particular acyclic 3-colorabi...

متن کامل

Acyclic improper choosability of graphs

We consider improper colorings (sometimes called generalized, defective or relaxed colorings) in which every color class has a bounded degree. We propose a natural extension of improper colorings: acyclic improper choosability. We prove that subcubic graphs are acyclically (3,1)∗-choosable (i.e. they are acyclically 3-choosable with color classes of maximum degree one). Using a linear time algo...

متن کامل

Acyclic Colorings and Triangulations of Weakly Chordal Graphs

An acyclic coloring of a graph is a proper vertex coloring without bichromatic cycles. We show that the acyclic colorings of any weakly chordal graph G correspond to the proper colorings of triangulations of G. As a consequence, we obtain polynomial-time algorithms for the acyclic coloring problem and the perfect phylogeny problem on the class of weakly chordal graphs. Our results also imply li...

متن کامل

Restricted Coloring Problems and Forbidden Induced Subgraphs

An acyclic coloring of a graph is a proper coloring such that any two color classes induce a forest. A star coloring of a graph is an acyclic coloring with the further restriction that the forest induced by any two color classes is a disjoint collection of stars. We consider the behavior of these problems when restricted to certain classes of graphs. In particular, we give characterizations of ...

متن کامل

Acyclic Coloring with Few Division Vertices

An acyclic k-coloring of a graph G is a mapping φ from the set of vertices of G to a set of k distinct colors such that no two adjacent vertices receive the same color and φ does not contain any bichromatic cycle. In this paper we prove that every planar graph with n vertices has a 1-subdivision that is acyclically 3-colorable (respectively, 4-colorable), where the number of division vertices i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010