Controlling a Finger-arm Robot to Emulate the Motion of the Human Upper Limb by Regulating Finger Manipulability

نویسندگان

  • Jian HUANG
  • Masayuki HARA
  • Tetsuro YABUTA
چکیده

The human upper limb possesses a high degree of freedom (DOF) and its redundant structure permits greater flexibility in various dexterous manipulations. The simplest structure of a multifingered robot arm is constructed by fixing a robot finger onto the end effector of a robot arm. A robot with such a structure is also called a macro-micro manipulator (Nagai & Yoshigawa, 1994, 1995; Yoshikawa, et al. 1993). Similar to the human upper limb, the fingerarm robot exhibits a high redundancy. The movement of the robots with such high redundancies creates the problem of how to determine the numerous DOFs of its joints. Controlling a robot with a high degree of redundancy is a fundamental problem in the field of robotics. A large number of studies have been published on the methodology for determining the redundant DOFs of a robot. Avoidance control of kinematics singularity (Nakamura & Hanafusa, 1986; Furusho & Usui 1989) and obstacle collision avoidance (Khatib, 1986; Maciejewski & Klein, 1985; Loeff & Soni, 1975; Guo & Hsia, 1993; Glass et. Al, 1995) by using redundant DOFs has been mostly investigated. In order to realize desired solutions for the above mentioned problems, methods involving null space (Vannoy & Xiao, 2004) and the criterion function (Kim & Kholsa, 1992; Ma & Nechev, 1995; Ma et al, 1996) have been typically applied. The finger-arm robot is unlike conventional redundant manipulators. The finger is usually lightweight and has a small link size as compared to the arm. Therefore, it is inappropriate to directly apply the methods developed for controlling a redundant manipulator to the finger-arm robot. To achieve the dexterity like the human hand-arm, a lightweight finger should be actively moved whereas the arm cooperate the movement of the finger, which will greatly improve the performance of a robot (Khatib, 1995; Melchiorri & Salisbury, 1995). The human hand-arm system exhibits similar features. The human hand is obviously lighter, smaller and more sensitive as compared to the arm. The hand-arm coordination is well organized by the central nervous system so as to generate a natural motion. The motivation of this study is to develop a control method emulating a natural movement similar to that of a human upper limb.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Real-time Motion Tracking Wireless System for Upper Limb Exosuit Based on Inertial Measurement Units and Flex Sensors (TECHNICAL NOTE)

This paper puts forward a real-time angular tracking (motion capture) system for a low cost upper limb exosuit based on sensor fusion; which is integrated by an elastic sleeve-mitten, two inertial measurement units (IMU), two flex sensors and a wireless communication system. The device can accurately detect the angular position of the shoulder (flexion-extension, abduction-adduction and interna...

متن کامل

Admittance Control of a Multi-Finger Arm Robot Using Manipulability of Fingers

Previous studies have proposed methods for admittance and impedance control for a finger-arm robot using the manipulability of the finger. Based on the previous theories, the authors have proposed an admittance control for a multifinger arm robot using the manipulability of the fingers in this study. Two 3-DOF fingers are attached to the end-effector of a 6DOF arm to configure a multi-finger ar...

متن کامل

Comparison of blood pressure measurements on the upper and lower extremities during spinal anesthesia

Introduction: During spinal anesthesia, measurement of blood pressure is often obtained by an indirect method using an inflatable cuff on the upper arm. The relationship between the blood pressure measurements at the two sites in patients undergoing spinal anesthesia is unclear. This study was designed to evaluate the difference observed in systolic blood pressure (SBP) taken from the upp...

متن کامل

Optimization of fuzzy controller for an SMA-actuated artificial finger robot

The purpose of this paper is to design and optimize an intelligent fuzzy-logic controller for a three-degree of freedom (3DOF) artificial finger with shape-memory alloy (SMA) wire actuators. The robotic finger is constructed using three SMA wires as tendons to bend each phalanx of the finger around its revolute joint and three torsion springs which return the phalanxes to their original positio...

متن کامل

Strategy of approach for seizure of an assistive mobile manipulator

In assistive robotics, a manipulator arm constitutes one possible solution for restoring some manipulation functions to victims of upper limb disabilities. The aim of this paper is to present a global strategy of approach of an assistive mobile manipulator (manipulator arm mounted on a mobile base). A manipulability criterion is defined to deal with the redundancy of the system. The aim is to k...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012