Infinitesimal Automorphisms and Deformations of Parabolic Geometries

نویسندگان

  • Andreas Čap
  • ANDREAS ČAP
چکیده

We show that infinitesimal automorphisms and infinitesimal deformations of parabolic geometries can be nicely described in terms of the twisted de–Rham sequence associated to a certain linear connection on the adjoint tractor bundle. For regular normal geometries, this description can be related to the underlying geometric structure using the machinery of BGG sequences. In the locally flat case, this leads to a deformation complex, which generalizes the is well know complex for locally conformally flat

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Essential Killing Fields of Parabolic Geometries: Projective and Conformal Structures

We use the general theory developed in our article [1] in the setting of parabolic geometries to reprove known results on special infinitesimal automorphisms of projective and conformal geometries.

متن کامل

Essential Parabolic Structures and Their Infinitesimal Automorphisms

Using the theory of Weyl structures, we give a natural generalization of the notion of essential conformal structures and conformal Killing fields to arbitrary parabolic geometries. We show that a parabolic structure is inessential whenever the automorphism group acts properly on the base space. As a corollary of the generalized Ferrand–Obata theorem proved by C. Frances, this proves a generali...

متن کامل

Essential Killing Fields of Parabolic Geometries

We study vector fields generating a local flow by automorphisms of a parabolic geometry with higher order fixed points. We develop general tools extending the techniques of [1], [2], and [3], and we apply them to almost Grassmannian, almost quaternionic, and contact parabolic geometries, including CR structures. We obtain descriptions of the possible dynamics of such flows near the fixed point ...

متن کامل

Infinitesimal Deformations of Double Covers of Smooth Algebraic Varieties

The goal of this paper is to give a method to compute the space of infinitesimal deformations of a double cover of a smooth algebraic variety. This research was inspired by the analysis of Calabi–Yau manifolds that arise as smooth models of double covers of P branched along singular octic surfaces ([4, 3]). It is of considerable interest to determine the Hodge numbers for these manifolds, but t...

متن کامل

Strongly Essential Flows on Irreducible Parabolic Geometries

We study the local geometry of irreducible parabolic geometries admitting strongly essential flows; these are flows by local automorphisms with higher-order fixed points. We prove several new rigidity results, and recover some old ones for projective and conformal structures, which show that in many cases the existence of a strongly essential flow implies local flatness of the geometry on an op...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005