Population Density and Seasonality Effects on Sin Nombre Virus Transmission in North American Deermice (Peromyscus maniculatus) in Outdoor Enclosures
نویسندگان
چکیده
Surveys of wildlife host-pathogen systems often document clear seasonal variation in transmission; conclusions concerning the relationship between host population density and transmission vary. In the field, effects of seasonality and population density on natural disease cycles are challenging to measure independently, but laboratory experiments may poorly reflect what happens in nature. Outdoor manipulative experiments are an alternative that controls for some variables in a relatively natural environment. Using outdoor enclosures, we tested effects of North American deermouse (Peromyscus maniculatus) population density and season on transmission dynamics of Sin Nombre hantavirus. In early summer, mid-summer, late summer, and fall 2007-2008, predetermined numbers of infected and uninfected adult wild deermice were released into enclosures and trapped weekly or bi-weekly. We documented 18 transmission events and observed significant seasonal effects on transmission, wounding frequency, and host breeding condition. Apparent differences in transmission incidence or wounding frequency between high- and low-density treatments were not statistically significant. However, high host density was associated with a lower proportion of males with scrotal testes. Seasonality may have a stronger influence on disease transmission dynamics than host population density, and density effects cannot be considered independent of seasonality.
منابع مشابه
Transmission Ecology of Sin Nombre Hantavirus in Naturally Infected North American Deermouse Populations in Outdoor Enclosures
Sin Nombre hantavirus (SNV), hosted by the North American deermouse (Peromyscus maniculatus), causes hantavirus pulmonary syndrome (HPS) in North America. Most transmission studies in the host were conducted under artificial conditions, or extrapolated information from mark-recapture data. Previous studies using experimentally infected deermice were unable to demonstrate SNV transmission. We ex...
متن کاملPopulation dynamics of the deer mouse (Peromyscus maniculatus) and Sin Nombre virus, California Channel Islands.
Hantavirus pulmonary syndrome, first documented in 1993, is caused by Sin Nombre virus (SNV), which is carried by the Peromyscus species. In 1994, high SNV antibody prevalence was identified in deer mice from two California Channel Islands. We sampled two locations on three islands to estimate mouse population density and SNV prevalence. Population flux and SNV prevalence appear to vary indepen...
متن کاملThe effect of seasonality, density and climate on the population dynamics of Montana deer mice, important reservoir hosts for Sin Nombre hantavirus.
1. Since Sin Nombre virus was discovered in the U.S. in 1993, longitudinal studies of the rodent reservoir host, the deer mouse (Peromyscus maniculatus) have demonstrated a qualitative correlation among mouse population dynamics and risk of hantavirus pulmonary syndrome (HPS) in humans, indicating the importance of understanding deer mouse population dynamics for evaluating risk of HPS. 2. Usin...
متن کاملPotential Role of Masting by Introduced Bamboos in Deer Mice (Peromyscus maniculatus) Population Irruptions Holds Public Health Consequences
We hypothesized that the ongoing naturalization of frost/shade tolerant Asian bamboos in North America could cause environmental consequences involving introduced bamboos, native rodents and ultimately humans. More specifically, we asked whether the eventual masting by an abundant leptomorphic ("running") bamboo within Pacific Northwest coniferous forests could produce a temporary surfeit of fo...
متن کاملPrediction of Peromyscus maniculatus (deer mouse) population dynamics in Montana, USA, using satellite-driven vegetation productivity and weather data.
Deer mice (Peromyscus maniculatus) are the main reservoir host for Sin Nombre virus, the primary etiologic agent of hantavirus pulmonary syndrome in North America. Sequential changes in weather and plant productivity (trophic cascades) have been noted as likely catalysts of deer mouse population irruptions, and monitoring and modeling of these phenomena may allow for development of early-warnin...
متن کامل