Radiation-Induced c-Jun Activation Depends on MEK1-ERK1/2 Signaling Pathway in Microglial Cells

نویسندگان

  • Zhiyong Deng
  • Guangchao Sui
  • Paulo Mottin Rosa
  • Weiling Zhao
چکیده

Radiation-induced normal brain injury is associated with acute and/or chronic inflammatory responses, and has been a major concern in radiotherapy. Recent studies suggest that microglial activation is a potential contributor to chronic inflammatory responses following irradiation; however, the molecular mechanism underlying the response of microglia to radiation is poorly understood. c-Jun, a component of AP-1 transcription factors, potentially regulates neural cell death and neuroinflammation. We observed a rapid increase in phosphorylation of N-terminal c-Jun (on serine 63 and 73) and MAPK kinases ERK1/2, but not JNKs, in irradiated murine microglial BV2 cells. Radiation-induced c-Jun phosphorylation is dependent on the canonical MEK-ERK signaling pathway and required for both ERK1 and ERK2 function. ERK1/2 directly interact with c-Jun in vitro and in cells; meanwhile, the JNK binding domain on c-Jun is not required for its interaction with ERK kinases. Radiation-induced reactive oxygen species (ROS) potentially contribute to c-Jun phosphorylation through activating the ERK pathway. Radiation stimulates c-Jun transcriptional activity and upregulates c-Jun-regulated proinflammatory genes, such as tumor necrosis factor-α, interleukin-1β, and cyclooxygenase-2. Pharmacologic blockade of the ERK signaling pathway interferes with c-Jun activity and inhibits radiation-stimulated expression of c-Jun target genes. Overall, our study reveals that the MEK-ERK1/2 signaling pathway, but not the JNK pathway, contributes to the c-Jun-dependent microglial inflammatory response following irradiation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tanshinone IIA inhibits AGEs-induced proliferation and migration of cultured vascular smooth muscle cells by suppressing ERK1/2 MAPK signaling

Objective(s): Vascular smooth muscle cells (VSMCs) play a key role in the pathogenesis of diabetic vascular disease. Our current study sought to explore the effects of tanshinone IIA on the proliferation and migration of VSMCs induced by advanced glycation end products (AGEs). Materials and Methods: In this study, we examined the effects of tanshinone IIA by cell proliferation assay and cell mi...

متن کامل

Erianin inhibits high glucose-induced retinal angiogenesis via blocking ERK1/2-regulated HIF-1α-VEGF/VEGFR2 signaling pathway

Erianin is a natural compound found in Dendrobium chrysotoxum Lindl. Diabetic retinopathy (DR) is a serious and common microvascular complication of diabetes. This study aims to investigate the inhibitory mechanism of erianin on retinal neoangiogenesis and its contribution to the amelioration of DR. Erianin blocked high glucose (HG)-induced tube formation and migration in choroid-retinal endoth...

متن کامل

H-RAS V12-induced radioresistance in HCT116 colon carcinoma cells is heregulin dependent.

The abilities of mutated active K-RAS and H-RAS proteins, in an isogenic human carcinoma cell system, to modulate the activity of signaling pathways following exposure to ionizing radiation is unknown. Loss of K-RAS D13 expression in HCT116 colorectal carcinoma cells blunted basal extracellular signal-regulated kinase 1/2 (ERK1/2), AKT, and c-Jun NH2-terminal kinase 1/2 activity. Deletion of th...

متن کامل

ERK pathway mediates P2X7 expression and cell death in renal interstitial fibroblasts exposed to necrotic renal epithelial cells.

We recently reported that necrotic renal proximal epithelial cells (RPTC) stimulate the expression of P2X7 receptor in renal fibroblasts and that P2X7 receptor mediates deleterious epithelial-fibroblast cross talk. The present study was carried out to investigate the signaling mechanism of necrotic RPTC-induced P2X7 expression in cultured renal interstitial fibroblasts (NRK-49F). Exposure of NR...

متن کامل

Effects of organochlorine insecticides on MAP kinase pathways in human HaCaT keratinocytes: key role of reactive oxygen species.

Organochlorine pesticides (OCs) are reported as potential carcinogens in humans. The aim of this study was to investigate the effects of four OCs (dieldrin, endosulfan, heptachlor, and lindane) on mitogen-activated protein kinase (MAPK) cascades and more specifically to identify the mechanism underlying OC-induced ERK1/2 activation. Organochlorine pesticides increased phosphorylated Raf, MEK1/2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012