Loss of Acid Sensing Ion Channel-1a and Bicarbonate Administration Attenuate the Severity of Traumatic Brain Injury
نویسندگان
چکیده
Traumatic brain injury (TBI) is a common cause of morbidity and mortality in people of all ages. Following the acute mechanical insult, TBI evolves over the ensuing minutes and days. Understanding the secondary factors that contribute to TBI might suggest therapeutic strategies to reduce the long-term consequences of brain trauma. To assess secondary factors that contribute to TBI, we studied a lateral fluid percussion injury (FPI) model in mice. Following FPI, the brain cortex became acidic, consistent with data from humans following brain trauma. Administering HCO3 (-) after FPI prevented the acidosis and reduced the extent of neurodegeneration. Because acidosis can activate acid sensing ion channels (ASICs), we also studied ASIC1a(-/-) mice and found reduced neurodegeneration after FPI. Both HCO3 (-) administration and loss of ASIC1a also reduced functional deficits caused by FPI. These results suggest that FPI induces cerebral acidosis that activates ASIC channels and contributes to secondary injury in TBI. They also suggest a therapeutic strategy to attenuate the adverse consequences of TBI.
منابع مشابه
Acid-sensing ion channel 1a regulates the survival of nucleus pulposus cells in the acidic environment of degenerated intervertebral discs
Objective(s): Activation of acid-sensing ion channel 1a (ASIC1a) is responsible for tissue injury caused by acidosis in nervous systems. But its physiological and pathological roles in nucleus pulposus cells (NPCs) are unclear. The aim of this study is to investigate whether ASIC1a regulates the survival of NPCs in the acidic environment of degenerated discs. Materials and Methods: NPCs were i...
متن کاملNeuroprotective strategies for traumatic brain injury
Head trauma is a common event that often causes traumatic brain injury (TBI). Following the acute mechanical insult, TBI evolves over the ensuing minutes and days. Understanding the secondary factors that contribute to TBI might suggest therapeutic strategies to reduce the long-term consequences of brain trauma. To assess secondary factors that contribute to TBI, we studied a fluid percussion i...
متن کاملNeuroprotective Effects of Berberine After Severe Traumatic Brain Injury in Male Rats: The Role of IL-1β and IL 10
Background and purpose: Traumatic brain injury (TBI) is the leading cause of death in young people. Berberine is a flavonoid rich in barberries and many traditional Iranian herbal remedies that could be used in treatment of neurodegenerative diseases. These properties make it a viable treatment for neurodegenerative diseases. Therefore, this study intended to investigate the neuroprotective ac...
متن کاملP60: Mesenchymal Stem Cells Encapsulated in a Self-Assembling Nanopeptide Scaffold Attenuate Neuroinflammation and Behavioral Function in a Model of Traumatic Brain Injury in Rats
Traumatic brain injury is one of the major causes of brain function impairments and surgery is involved in the treatment program of many cases although it cannot rescue the brain functions completely and is confined to reduce the second injury .in this study we aimed to investigate the effects of mesenchymal stem cells encapsulated in RADA1- GGS IKVAV, surgically injected into the lesion site. ...
متن کاملMobilization of stem cell with granulocyte-colony stimulating factor promotes recovery after traumatic brain injury in rat
Introduction: This study was designed to investigate the effects of granulocyte colony-stimulating factor (G-CSF) administration in rats for 6 weeks after traumatic brain injury (TBI). Methods: Adult male Wistar rats (n = 30) were injured with controlled cortical impact device and divided into four groups. The treatment groups (n = 10 each) were injected subcutaneously with recombinant human...
متن کامل