Heparanase 2, mutated in urofacial syndrome, mediates peripheral neural development in Xenopus
نویسندگان
چکیده
Urofacial syndrome (UFS; previously Ochoa syndrome) is an autosomal recessive disease characterized by incomplete bladder emptying during micturition. This is associated with a dyssynergia in which the urethral walls contract at the same time as the detrusor smooth muscle in the body of the bladder. UFS is also characterized by an abnormal facial expression upon smiling, and bilateral weakness in the distribution of the facial nerve has been reported. Biallelic mutations in HPSE2 occur in UFS. This gene encodes heparanase 2, a protein which inhibits the activity of heparanase. Here, we demonstrate, for the first time, an in vivo developmental role for heparanase 2. We identified the Xenopus orthologue of heparanase 2 and showed that the protein is localized to the embryonic ventrolateral neural tube where motor neurons arise. Morpholino-induced loss of heparanase 2 caused embryonic skeletal muscle paralysis, and morphant motor neurons had aberrant morphology including less linear paths and less compactly-bundled axons than normal. Biochemical analyses demonstrated that loss of heparanase 2 led to upregulation of fibroblast growth factor 2/phosphorylated extracellular signal-related kinase signalling and to alterations in levels of transcripts encoding neural- and muscle-associated molecules. Thus, a key role of heparanase 2 is to buffer growth factor signalling in motor neuron development. These results shed light on the pathogenic mechanisms underpinning the clinical features of UFS and support the contention that congenital peripheral neuropathy is a key feature of this disorder.
منابع مشابه
Heparanase mediates cell adhesion independent of its enzymatic activity.
Heparanase is an endo-beta-D-glucuronidase that cleaves heparan sulfate and is implicated in diverse physiological and pathological processes. In this study we report on a novel direct involvement of heparanase in cell adhesion. We demonstrate that expression of heparanase in nonadherent lymphoma cells induces early stages of cell adhesion, provided that the enzyme is expressed on the cell surf...
متن کاملRetinoic acid induced-1 (Rai1) regulates craniofacial and brain development in Xenopus
Retinoic acid induced-1 (RAI1) is an important yet understudied histone code reader that when mutated in humans results in Smith-Magenis syndrome (SMS), a neurobehavioral disorder accompanied by signature craniofacial abnormalities. Despite previous studies in mouse and human cell models, very little is known about the function of RAI1 during embryonic development. In the present study, we have...
متن کاملOchoa or Urofacial syndrome.
We report a 10 year old boy presenting with bilateral hydronephrosis and peculiar facial expression suggestive of Ochoa Syndrome or Urofacial syndrome. He had chronic renal failure which was managed conservatively.
متن کاملExpression of hsp90 Alpha and hsp90 Beta during Xenopus laevis Embryonic Development
Background: Members of the eukaryotic Hsp90 family function as important molecular chaperones in the assembly, folding and activation of cellular signaling in development. Two hsp90 genes, hsp90 alpha and hsp90 beta, have been identified in fish and homeothermic vertebrates but not in poikilothermic vertebrates. In the present study, the expression of hsp90 alpha and hsp90 beta genes in Xenopus...
متن کاملEarly diagnosis of the urofacial syndrome is essential to prevent irreversible renal failure.
INTRODUCTION The urofacial or Ochoa syndrome is a rare disease characterized by the presence of functional obstructive uropathy associated with peculiar facial features when patients attempt to smile or laugh. Unfortunately, many of these patients remain without proper diagnosis or adequate treatment due to lack of recognition of the disease. This can ultimately result in upper tract deteriorat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 23 شماره
صفحات -
تاریخ انتشار 2014