Functionally distinct RNA polymerase binding sites in the phage Mu mom promoter region.
نویسندگان
چکیده
Transcription of the phage Mu com/mom operon is trans-activated by another phage gene product, C, a site-specific DNA binding protein. To gain insight into the mechanism by which C activates transcription, we carried out footprinting analyses of Escherichia coli RNA polymerase (= RNAP) binding to various com-lacZ fusion plasmids. KMnO4-sensitive sites (diagnostic of the melted regions in open-complexes) and DNase I-sensitive sites were located by primer-extension analysis. The results are summarized as follows: (i) in vivo, in the absence of C, RNAP bound in the wild-type (wt) promoter region at a site designated P2; in vitro DNase I-footprinting showed that P2 extends from -74 to -24 with respect to transcription initiation. This overlaps a known strong C-binding site (at -35 to -54). RNAP bound at P2 appeared to be in an open-complex, as evidenced by the presence of KMnO4-hypersensitive sites. (ii) In contrast, when C was present in vivo, RNAP bound in the wt promoter region at a different site, designated P1, located downstream and partially overlapping P2. RNAP bound at P1 also appeared to be in an open-complex, as evidenced by the presence of KMnO4-hypersensitive sites. (iii) Two C-independent mutants, which initiate transcription at the same position as the wt, were also analyzed. In vivo, in the absence of C, RNAP bound mutant tin7 (contains a T to G substitution at -14) predominantly at P1; in vitro DNase I-footprinting showed that P1 extends from -56 to +21. With mutant tin6 (a 63 base-pair deletion removing P2, as well as part of P1 and the C-binding site from -35 to -54), RNAP bound to P1 independent of C. We conclude that P1 is the 'functional' RNAP binding site for mom-transcription initiation, and that C activates transcription by promoting binding at P1, while blocking binding at P2.
منابع مشابه
Transcriptional activator C protein-mediated unwinding of DNA as a possible mechanism for mom gene activation.
The bacteriophage Mu mom gene encodes the unique DNA-modification function of the phage. Regulation of the mom gene at the transcriptional level is brought about by the transactivator protein C of the phage. The mom promoter is an activator-dependent weak promoter having poor -10 and -35 elements separated by a 19 bp suboptimal spacer region. These features could constrain RNA polymerase occupa...
متن کاملDual role for transactivator protein C in activation of mom promoter of bacteriophage Mu.
Transactivator C protein of bacteriophage Mu activates the mom gene of the phage by an unusual mechanism. DNA binding by C to its site results in unwinding of the neighboring sequences, realigning the out-of-phase promoter elements to facilitate RNA polymerase (RNAP) binding. High level stimulation of a C-independent constitutive promoter mutant (where RNAP is already bound) by the transactivat...
متن کاملEscherichia coli OxyR protein represses the unmethylated bacteriophage Mu mom operon without blocking binding of the transcriptional activator C.
Transcription of the bacteriophage Mu mom operon requires transactivation by the phage-encoded C protein. DNase I footprinting showed that in the absence of C, Escherichia coli RNA polymerase E(sigma)70 (RNAP) binds to the mom promoter (Pmom) region at a site, P2 (from -64 to -11 with respect to the transcription start site), on the top (non-transcribed) strand. This is slightly upstream from, ...
متن کاملDifferential binding of RNA polymerase to the wild type Mu mom promoter and its C independent mutant: a theoretical analysis.
Using the theoretical model for DNA bending we have analyzed the Mu mom promoter wild type and its mutant tin7 which showed differential binding to the RNA polymerase. We have demonstrated here the structural change as a result of the point mutation which may be responsible for the altered binding of RNA polymerase. Analysis using both sets of parameters essentially gives the same result.
متن کاملDNA unwinding mechanism for the transcriptional activation of momP1 promoter by the transactivator protein C of bacteriophage Mu.
Transcription factor-induced conformational changes in DNA are one of the mechanisms of transcription activation. C protein of bacteriophage Mu appears to transactivate the mom gene of the phage by this mode. DNA binding by C to its site leads to torsional changes that seem to compensate for a weak momP1 promoter having a suboptimal spacing of 19 bp between the poor -35 and -10 elements. The C-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic acids research
دوره 20 11 شماره
صفحات -
تاریخ انتشار 1992