Somewhere, Something Incredible Is Waiting to Be Known Faculty Opponent List of Papers
نویسنده
چکیده
The central nervous system (CNS) is the most complex organ in the body, responsible for complex functions, including thinking, reasoning and memory. The CNS contains cells of many different types, often generated in vast numbers. Hence, CNS development requires precise genetic control of both cell fate and of cell proliferation, to generate the right number of cells, with the proper identity, and in the proper location. The cells also need to make connections with each other for correct signaling and function. This complexity evokes the question of how this is regulated. How does the stem cells, responsible for building the CNS, know how many times to divide, and how does the daughters know which identity to acquire and in which location they shall end up? During Drosophila melanogaster development, the neuroblasts (NBs) are responsible for generating the CNS. In each hemisegment, every NB is unique in identity, and generates a predetermined number of daughters with specific identities. The lineages of different NBs vary in size, but are always the same for each specific NB, and the division modes of each NBs is hence stereotyped. Most NBs start dividing by renewing themselves while generating daughters that will in turn divide once to generate two neurons and/or glia (denoted type I mode). Many, maybe all, NBs later switch to generating daughters that will differentiate directly into a neuron or glia (denoted type 0 mode). This type I>0 switch occurs at different time-points during lineage progression, and influences the total numbers of cells generated from a single NB. The work presented in this thesis aimed at investigating the genetic regulation of proliferation, with particular focus on the type I>0 switch. In the first project, the implication of the Notch pathway on the type I>0 switch was studied. Mutants of the Notch pathway do not switch, and the results show that the Notch pathway regulates the switch by activation of several target genes, both regulators and cell cycle genes. One of the target genes, the E(spl)-C genes, have been difficult to study due to functional redundancy. This study reveals that even though they can functionally compensate for each other, they have individual functions in different lineages. Regarding cell cycle genes, both Notch and E(spl)-C regulate several key cell cycle genes, and molecular analysis indicated that this regulation is direct. In the second project we studied the seq gene, previously identified in a genetic screen. We found that seq controls the type I>0 switch by regulating the key cell cycle genes, but also through interplay with the Notch pathway. Notch and seq stop proliferation, and in the third project we wanted to identify genes that drive proliferation. We found that there is battery of early NB genes, socalled early factors, which activate the cell cycle, and drive NB and daughter proliferation. These are gradually replaced by late regulators, and the interplay between early and late factors acts to achieve precise control of lineage progression. The work presented here increases our understanding of how regulatory programs act to control the development of the CNS; to generate the right number of cells of different identities. These results demonstrate the importance of correct regulation of proliferation in both stem cells and daughters. Problems in this control can result in either an underdeveloped CNS or loss of control such as in cancer. Knowledge about these regulatory programs can contribute to the development of therapeutics against these diseases. Populärvetenskaplig sammanfattning Det centrala nervsystemet (CNS) är kroppens mest komplexa organ. Det ansvarar för komplexa uppgifter såsom tänkande, medvetande och inlärning. CNS består av många olika celltyper som bildas i stort antal, och därmed finns en mångfald av olika celler med specifika funktioner. För att CNS ska bildas med rätt antal celler, med rätt identitet, och på rätt ställe krävs kontroll under utvecklingen. Problem i denna reglering kan leda till att CNS blir underutvecklat med kognitiva problem, eller att kontrollen över stamcellerna förloras och de börjar dela sig okontrollerat och cancer utvecklas. Hur regleras bildandet av CNS? Jag har använt Drosophila melanogaster som modellsystem för att studera utvecklingen av CNS under embryonalutvecklingen. I varje hemisegment är varje enskild neuroblast (NB), stamcellerna i CNS, unik i sin identitet genom att de föds på samma ställe och genererar samma antal dotterceller i varje embryo. De flesta NBs börjar dela sig så att de förnyar sig själva och bildar en dottercell, och dottercellen i sin tur delar sig en gång och generar två nervceller och/eller gliaceller (typ I). Många NBs skiftar senare under utveckling till att dela sig så att de förnyar sig själva och bildar en nervcell/gliacell direkt (typ 0). Detta skifte i delningsmönster (typ I>0) kan ske vid olika tidpunkter för olika NBs, och påverkar antalet celler som bildas från varje enskild NB. Jag har studerat hur delningar av NBs och dotterceller, speciellt detta skifte, regleras genetiskt. I det första projektet studerades hur signalvägen Notch påverkar skiftet. Mutanter i Notch genomgår inte skiftet utan döttrarna fortsätter att dela sig och bildar fler celler än normalt. Resultaten visar att Notch reglerar skiftet genom att aktivera målgener och gener som styr celldelning. Målgenerna, tillhörande genkomplexet E(spl)-C, har varit svåra att studera då de kan kompensera för varandras funktion, men i denna studie såg vi att de har individuella funktioner. I det andra projektet studerades en gen, sequoia, som tidigare identifierats för att fler celler bildas från en NB när genen muteras. Vi kunde se att denna gen förhindrar att skiftet sker genom att reglera samma gener som signalvägen Notch, men också genom att samverka med Notch. Både Notch och sequoia hindrar därmed celler från att dela sig, och i det tredje projektet ville vi identifiera gener som stimulerar celler att föröka sig. Vi fann att gener som uttrycks tidigt under utvecklingen i NBs stimulerar celler att dela sig, och att dessa successivt ersätts av gener som hindrar delningar. Dessa interagerar med varandra genom att reglera gener som styr celldelning, men även genom att reglera varandra. Detta säkerställer att NBs och deras döttrar delar sig rätt antal gånger och genererar rätt antal döttrar av varje identitet. Arbetet presenterat i den här avhandlingen hjälper till att öka förståelsen för hur regulatoriska program verkar för att kontrollera utvecklingen av CNS, så att rätt antal celler av varje identitet bildas. Dessa resultat visar på betydelsen av korrekt reglering av förökningen hos både stamceller och deras döttrar. Problem i denna kontroll kan leda till antingen ett underutvecklat CNS eller överväxt av celler såsom i cancer, men även psykiatriska sjukdomar som depression. Kunskap om dessa regulatoriska program kan bidra till utvecklingen av läkemedel mot sjukdomarna.
منابع مشابه
Long Waiting Times for Elective Hospital Care – Breaking the Vicious Circle by Abandoning Prioritisation
Background Policies assigning low-priority patients treatment delays for care, in order to make room for patients of higher priority arriving later, are common in secondary healthcare services today. Alternatively, each new patient could be granted the first available appointment. We aimed to investigate whether prioritisation can be part of the reason why waiting times for care are often...
متن کاملAppointment process of open-heart surgery in Shahid Rajaei Heart Hospital using a discrete event simulation approach
Background: The waiting list is a list of selected patients in the surgical queue. If demand exceeds capacity, the waiting list grows rapidly, which may lead to unacceptable waiting for patients, especially those in need of acute medical care. Patients waiting for heart surgery are placed on the waiting list for surgery, and sometimes the waiting time is longer than patients expect. Reducing th...
متن کامل5 . Waiting - Time Distributions
Somewhere, something incredible is waiting to be known. The universe is full of magical things, patiently waiting for our wits to grow sharper. Why are waiting times interesting? While waiting times in our everyday life are usually associated with boredom, the statistics of waiting times contains scientifically interesting information about (1) the mean rates of event occurrence and (2) the ran...
متن کاملThe effect of sound therapy on the anxiety and blood pressure of patients on the waiting list for gastrointestinal endoscopy: A randomized clinical trial
Background: Anxiety is one the main problems of patients on waiting list for endoscopic procedures. Previous studies have indicated adverse effects of anxiety on these patients. Aim: to determine the effect of sound therapy on the anxiety and blood pressure of patients on waiting list for endoscopy. Methods: This was a randomized clinical trial, in which 124 patients on waiting list for endosco...
متن کاملEffect of Increase in Amplitude of Occipital Alpha & Theta Brain Waves on Global Functioning Level of Patients with GAD
Introduction: The basic objective of this study is to investigate the effects of alpha and theta brain waves amplitude increase in occipital area on reducing the severity of symptoms of generalized anxiety disorder and to increase the global functioning level in patients with GAD. Methods: This study is a quasi-experimental study with pre-test and post-test with two groups. For this purpos...
متن کاملCommentary of Covenant in the Holy Verse: When Allah Made (His) Covenant with the Prophets
Waiting for a savior and a better future has been known as a true and respectable idea of revealed religions. However, little considerable study has been performed on the real meaning of waiting as a Divine promise in the prophets and their followers` minds and lives. On the studies in the field, the problem of waiting as a continuous reality in the history of prophecy may be searched in the ve...
متن کامل