Global Newton Iteration over Archimedean and non-Archimedean Fields
نویسندگان
چکیده
In this paper, we study iterative methods on the coefficients of the rational univariate representation (RUR) of a given algebraic set, called global Newton iteration. We compare two natural approaches to define locally quadratically convergent iterations: the first one involves Newton iteration applied to the approximate roots individually and then interpolation to find the RUR of these approximate roots; the second one considers the coefficients in the exact RUR as zeroes of a high dimensional map defined by polynomial reduction, and applies Newton iteration on this map. We prove that over fields with a p-adic valuation these two approaches give the same iteration function, but over fields equipped with the usual Archimedean absolute value, they are not equivalent. In the latter case, we give explicitly the iteration function for both approaches. Finally, we analyze the parallel complexity of the different versions of the global Newton iteration, compare them, and demonstrate that they can be efficiently computed. The motivation for this study comes from the certification of approximate roots of overdetermined and singular polynomial systems via the recovery of an exact RUR from approximate numerical data.
منابع مشابه
A Note on Global Newton Iteration Over Archimedean and Non-Archimedean Fields
In this paper, we study iterative methods on the coefficients of the rational univariate representation (RUR) of a given algebraic set, called global Newton iteration. We compare two natural approaches to define locally quadratically convergent iterations: the first one involves Newton iteration applied to the approximate roots individually and then interpolation to find the RUR of these approx...
متن کاملStochastic processes and antiderivational equations on non-Archimedean manifolds
Stochastic processes on manifolds over non-Archimedean fields and with transition measures having values in the field C of complex numbers are studied. Stochastic antideriva-tional equations (with the non-Archimedean time parameter) on manifolds are investigated. 1. Introduction. Stochastic processes and stochastic differential equations on real Banach spaces and manifolds on them were intensiv...
متن کاملNon-archimedean Amoebas and Tropical Varieties
We study the non-archimedean counterpart to the complex amoeba of an algebraic variety, and show that it coincides with a polyhedral set defined by Bieri and Groves using valuations. For hypersurfaces this set is also the tropical variety of the defining polynomial. Using non-archimedean analysis and a recent result of Conrad we prove that the amoeba of an irreducible variety is connected. We i...
متن کاملPositive-additive functional equations in non-Archimedean $C^*$-algebras
Hensel [K. Hensel, Deutsch. Math. Verein, {6} (1897), 83-88.] discovered the $p$-adic number as a number theoretical analogue of power series in complex analysis. Fix a prime number $p$. for any nonzero rational number $x$, there exists a unique integer $n_x inmathbb{Z}$ such that $x = frac{a}{b}p^{n_x}$, where $a$ and $b$ are integers not divisible by $p$. Then $|x...
متن کاملOn the Classification of Rank 1 Groups over Non-archimedean Local Fields
We outline the classification of K-rank 1 groups over non-archimedean local fields K up to strict isogeny, as in [Ti1] and [Ti2]. We outline the classification of absolutely simple algebraic groups over non-archimedean local fields, up to strict isogeny. This is classical, and accounts of it have been written by Tits ([Ti1], [Ti2]) and Satake ([Sa]). Tits compiled tables of ‘admissible indices’...
متن کامل