Decreased cyclin A2 and increased cyclin G1 levels coincide with loss of proliferative capacity in rat Leydig cells during pubertal development.
نویسندگان
چکیده
Postnatal development of Leydig cells can be divided into three distinct stages of differentiation: initially they exist as mesenchymal-like progenitors (PLC) by day 21; subsequently, as immature Leydig cells (ILC) by day 35, they acquire steroidogenic organelle structure and enzyme activities but metabolize most of the testosterone they produce; finally, as adult Leydig cells (ALC) by day 90 they actively produce testosterone. The aims of the present study were to determine whether changes in proliferative capacity are associated with progressive differentiation of Leydig cells, and if the proliferative capacity of Leydig cells is controlled by known hormonal regulators of testosterone biosynthesis: LH, insulin-like growth factor I (IGF-I), androgen, and estradiol (E2). Isolated PLC, ILC, and ALC were cultured in DMEM/F-12 for 24 h followed by an additional 24 h in the presence of LH (1 ng/ml), IGF-I (70 ng/ml), 7alpha-methyl-19-nortestosterone (MENT, 50 nM), a synthetic androgen that is not metabolized by 5alpha-reductase, or E2 (50 nM). Proliferative capacity was measured by assaying [3H]thymidine incorporation and labeling index (LI). Messenger RNA (mRNA) and protein levels for cyclin A2 and G1, which are putative intracellular regulators of Leydig cell proliferation and differentiation, were measured by RT-PCR and immunoblotting, respectively. Thymidine incorporation was highest in PLC (9.24 +/- 0.21 cpm/10(3) cell, mean +/- SE), intermediate in ILC (1.74 +/- 0.07) and lowest in ALC (0.24 +/- 0.03). Similarly, LI was highest in PLC (13.42 +/- 0.30%, mean +/- SE), intermediate in ILC (1.95 +/- 0.08%), and undetectable in ALC. Cyclin A2 mRNA levels, normalized to ribosomal protein S16 (RPS16), were highest in PLC (2.76 +/- 0.21, mean +/- SE), intermediate in ILC (1.79 +/- 0.14), and lowest in ALC (0.40 +/- 0.06). In contrast, cyclin G1 mRNA levels were highest in ALC (1.32 +/- 0.16), intermediate in ILC (0.47 +/- 0.07), and lowest in PLC (0.12 +/- 0.02). The relative protein levels of cyclin A2 and G1 paralleled their mRNA levels. Increased proliferative capacity was observed in PLC and ILC, but not ALC, after treatment with either LH or IGF-I. Treatment with MENT increased proliferative capacity only in ILC and had no effect in any other group. Treatment with E2 decreased proliferative capacity in PLC but not in ILC or ALC. The changes in proliferative capacity after hormonal treatment paralleled cyclin A2 mRNA and were the inverse of cyclin G1 mRNA levels. We conclude that: 1) decreased cyclin A2 and increased cyclin G1 are associated with the withdrawal of the Leydig cell from the cell cycle; 2) the proliferative capacity of Leydig cells is regulated differentially by hormones and is progressively lost during postnatal differentiation.
منابع مشابه
Time Course of Degradation and Deadenylation of Maternal c-mos and Cyclin A2 mRNA during Early Development of One-Cell Embryo in Mouse
Early in the development of many animals, before transcription begins, any change in the pattern of protein synthesis is attributed to a change in the translational activity or stability of mRNA in the egg and early embryo. As a result, translational control is critical for a variety of developmental decisions, including oocyte maturation and initiation of preimplantation development. In this s...
متن کاملتغییرات بیان ژنهای P53 ، Cyclin-D1 ، RB1 ، c-Fos ، N-ras در هپاتوسلولار کارسینوما در ایران
Background: Hepatocellular carcinoma is the most common primary malignant tumor of the liver. The effect of some genes especially those involved in cell cycle regulation have been shown in the development of this cancer in several studies but there are some controversies about them yet. Materials and methods: The paraffin-embedded tissue samples of 25 patients (18 males and 7 females) with hep...
متن کاملOverexpression of cyclin D1 enhances gene amplification.
Defects in cell cycle control and increased genomic instability, including gene amplification, often occur during cancer development. Cyclin D1 plays a pivotal role in G1, and this gene is frequently amplified and overexpressed in several types of human cancer. This study demonstrates that ectopic overexpression of cyclin D1 in a rat liver epithelial cell line markedly increased the yield of ce...
متن کاملInvestigating the Erα and Cyclin D1 Gene Expression Levels, Changes in SOD, NO, and MDA Levels, and Histopathology of Mice Testicular Tissue Treated with AFG1
Background and purpose: Previous studies have shown the adverse effects of aflatoxin G1 on testicular tissue and the process of spermatogenesis. The aim of this study was to investigate changes in the expression of Cyclin D1, the estrogen receptor ERα and the levels of nitric oxide (NO), superoxide dismutase (SOD), and malondialdehyde (MDA) in testicular tissue following exposure to AFG1. Mate...
متن کاملIntermittent hypoxia reduces microglia proliferation and induces DNA damage in vitro
Objective(s):Intermittent hypoxia (IH), caused by obstructive sleep apnea (OSA), could cause hippocampus or neuron damage through multiple signaling pathways, while the underlying mechanisms are still unclear. Thus, the present study aimed to explore the effect of IH on the biological functions of microglia cells. Materials and Methods:Cell proliferation of BV2 cells after exposure to IH were o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Endocrinology
دوره 138 9 شماره
صفحات -
تاریخ انتشار 1997