Sensor Applications of Soft Magnetic Materials Based on Magneto-Impedance, Magneto-Elastic Resonance and Magneto-Electricity
نویسندگان
چکیده
The outstanding properties of selected soft magnetic materials make them successful candidates for building high performance sensors. In this paper we present our recent work regarding different sensing technologies based on the coupling of the magnetic properties of soft magnetic materials with their electric or elastic properties. In first place we report the influence on the magneto-impedance response of the thickness of Permalloy films in multilayer-sandwiched structures. An impedance change of 270% was found in the best conditions upon the application of magnetic field, with a low field sensitivity of 140%/Oe. Second, the magneto-elastic resonance of amorphous ribbons is used to demonstrate the possibility of sensitively measuring the viscosity of fluids, aimed to develop an on-line and real-time sensor capable of assessing the state of degradation of lubricant oils in machinery. A novel analysis method is shown to sensitively reveal the changes of the damping parameter of the magnetoelastic oscillations at the resonance as a function of the oil viscosity. Finally, the properties and performance of magneto-electric laminated composites of amorphous magnetic ribbons and piezoelectric polymer films are investigated, demonstrating magnetic field detection capabilities below 2.7 nT.
منابع مشابه
Bending analysis of magneto-electro-thermo-elastic functionally graded nanobeam based on first order shear deformation theory
In this research, analysis of nonlocal magneto-electro-thermo-elastic of a functionally graded nanobeamdue to magneto-electro-elastic loads has been done. In order to formulate the problem the Timoshenko theory of beams is utilized. The principle of virtual work, Hamilton’s principle as well as nonlocal magneto-electro-thermo-elastic relations has been recruited to derive the governing eq...
متن کاملVibration Analysis of Magneto-Electro-Elastic Timoshenko Micro Beam Using Surface Stress Effect and Modified Strain Gradient Theory under Moving Nano-Particle
In this article, the free vibration analysis of magneto-electro-elastic (MEE) Timoshenko micro beam model based on surface stress effect and modified strain gradient theory (MSGT) under moving nano-particle is presented. The governing equations of motion using Hamilton’s principle are derived and these equations are solved using differential quadrature method (DQM). The effects of dimensionless...
متن کاملOn the Buckling the Behavior of a Multiphase Smart Plate based on a Higher-order Theory
Magneto-electro-elastic materials are multiphase smart materials that exhibit coupling among electrical, magnetic and mechanical energy fields. Due to this ability, they have been the topic of numerous research in the past decade. In this paper, buckling behavior of a multiphase magneto-electro-elastic rectangular plate with simply supported boundary conditions is investigated, based on Reddy’s...
متن کاملMagneto-Electro-Thermo-Mechanical Response of a Multiferroic Doubly-Curved Nano-Shell
Free vibration of a simply-supported magneto-electro-elastic doubly-curved nano-shell is studied based on the first-order shear deformation theory in the presence of the rotary inertia effect. To model the electric and magnetic behaviors of the nano-shell, Gauss’s laws for electrostatics and magneto statics are used. By using Navier’s method, the partial differential equations of motion are red...
متن کاملThin Magnetically Soft Wires for Magnetic Microsensors
Recent advances in technology involving magnetic materials require development of novel advanced magnetic materials with improved magnetic and magneto-transport properties and with reduced dimensionality. Therefore magnetic materials with outstanding magnetic characteristics and reduced dimensionality have recently gained much attention. Among these magnetic materials a family of thin wires wit...
متن کامل