Uniform Hyperplanes of Finite Dual Polar Spaces of Rank 3
نویسندگان
چکیده
Let 2 be a finite thick dual polar space of rank 3. We say that a hyperplane H of 2 is locally singular (respectively, quadrangular or ovoidal) if H & Q is the perp of a point (resp. a subquadrangle or an ovoid) of Q for every quad Q of 2. If H is locally singular, quadrangular, or ovoidal, then we say that H is uniform. It is known that if H is locally singular, then either H is the set of points at non-maximal distance from a given point of 2 or 2 is the dual of Q(6, q) and H arises from the generalized hexagon H(q). In this paper we prove that only two examples exist for the locally quadrangular case, arising in Q(6, 2) and H (5, 4), respectively. We fail to rule out the locally ovoidal case, but we obtain some partial results on it, which imply that, in this case, the geometry 2"H induced by 2 on the complement of H cannot be flag-transitive. As a bi-product, the hyperplanes H with 2"H flagtransitive are classified. 2001 Academic Press
منابع مشابه
Locally subquadrangular hyperplanes in symplectic and Hermitian dual polar spaces
In [11] all locally subquadrangular hyperplanes of finite symplectic and Hermitian dual polar spaces were determined with the aid of counting arguments and divisibility properties of integers. In the present note we extend this classification to the infinite case. We prove that symplectic dual polar spaces and certain Hermitian dual polar spaces cannot have locally subquadrangular hyperplanes i...
متن کاملOn the simple connectedness of hyperplane complements in dual polar spaces
Let ∆ be a dual polar space of rank n ≥ 4, H be a hyperplane of ∆ and Γ := ∆\H be the complement of H in ∆. We shall prove that, if all lines of ∆ have more than 3 points, then Γ is simply connected. Then we show how this theorem can be exploited to prove that certain families of hyperplanes of dual polar spaces, or all hyperplanes of certain dual polar spaces, arise from embeddings.
متن کاملOn a Class of Hyperplanes of the Symplectic and Hermitian Dual Polar Spaces
Let ∆ be a symplectic dual polar space DW (2n−1, K) or a Hermitian dual polar space DH(2n − 1, K, θ), n ≥ 2. We define a class of hyperplanes of ∆ arising from its Grassmann-embedding and discuss several properties of these hyperplanes. The construction of these hyperplanes allows us to prove that there exists an ovoid of the Hermitian dual polar space DH(2n−1, K, θ) arising from its Grassmann-...
متن کاملHyperplanes of dual polar spaces of rank 3 with no subquadrangular quad
Let D be a thick dual polar space of rank 3, and let H be a hyperplane of D. Calling the elements of D points, lines and quads, we call a quad aNH singular if H V a 1⁄4 P? V a for some point P, subquadrangular if H V a is a subquadrangle, and ovoidal if H V a is an ovoid. A point P A H of a quad a is said to be deep with respect to a if P? V aHH, and it is called deep if P? HH. We investigate h...
متن کاملHyperplanes of Hermitian dual polar spaces of rank 3 containing a quad
Let F and F′ be two fields such that F′ is a quadratic Galois extension of F. If |F| ≥ 3, then we provide sufficient conditions for a hyperplane of the Hermitian dual polar space DH(5,F′) to arise from the Grassmann embedding. We use this to give an alternative proof for the fact that all hyperplanes of DH(5, q2), q 6= 2, arise from the Grassmann embedding, and to show that every hyperplane of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comb. Theory, Ser. A
دوره 94 شماره
صفحات -
تاریخ انتشار 2001