Glycosylation genes expressed in seam cells determine complex surface properties and bacterial adhesion to the cuticle of Caenorhabditis elegans.

نویسندگان

  • Maria J Gravato-Nobre
  • Dave Stroud
  • Delia O'Rourke
  • Creg Darby
  • Jonathan Hodgkin
چکیده

The surface of the nematode Caenorhabditis elegans is poorly understood but critical for its interactions with the environment and with pathogens. We show here that six genes (bus-2, bus-4, and bus-12, together with the previously cloned srf-3, bus-8, and bus-17) encode proteins predicted to act in surface glycosylation, thereby affecting disease susceptibility, locomotory competence, and sexual recognition. Mutations in all six genes cause resistance to the bacterial pathogen Microbacterium nematophilum, and most of these mutations also affect bacterial adhesion and biofilm formation by Yersinia species, demonstrating that both infection and biofilm formation depend on interaction with complex surface carbohydrates. A new bacterial interaction, involving locomotory inhibition by a strain of Bacillus pumilus, reveals diversity in the surface properties of these mutants. Another biological property--contact recognition of hermaphrodites by males during mating--was also found to be impaired in mutants of all six genes. An important common feature is that all are expressed most strongly in seam cells, rather than in the main hypodermal syncytium, indicating that seam cells play the major role in secreting surface coat and consequently in determining environmental interactions. To test for possible redundancies in gene action, the 15 double mutants for this set of genes were constructed and examined, but no synthetic phenotypes were observed. Comparison of the six genes shows that each has distinctive properties, suggesting that they do not act in a linear pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Caenorhabditis elegans BAH-1 Is a DUF23 Protein Expressed in Seam Cells and Required for Microbial Biofilm Binding to the Cuticle

The cuticle of Caenorhabditis elegans, a complex, multi-layered extracellular matrix, is a major interface between the animal and its environment. Biofilms produced by the bacterial genus Yersinia attach to the cuticle of the worm, providing an assay for surface characteristics. A C. elegans gene required for biofilm attachment, bah-1, encodes a protein containing the domain of unknown function...

متن کامل

Nuclear receptor NHR-25 is required for cell-shape dynamics during epidermal differentiation in Caenorhabditis elegans.

Epithelial cell shape changes underlie important events in animal development. During the postembryonic life of the nematode Caenorhabditis elegans, stem epidermal seam cells lose and actively renew mutual adherens junction contacts after each asymmetric division that separates them. The seam cell contacts are important for epidermal differentiation, but what regulates the cell-shape changes th...

متن کامل

Tocotrienol Modulates the Expression of Proteins in Oxidative Stress-Induced Caenorhabditis Elegans

Objective: Oxidative stress that damages proteins result in aging and age related diseases. The aim of this study is to determine the effect of tocotrienol rich fraction (TRF) on the expression of proteins in oxidative stress-induced caenohabditis elegans (C.elegans) which has homologous genes to humans. Methods: The worms were treated with TRF prior to, after and continuously in separate group...

متن کامل

Multiple genes affect sensitivity of Caenorhabditis elegans to the bacterial pathogen Microbacterium nematophilum.

Interactions with bacteria play a major role in immune responses, ecology, and evolution of all animals, but they have been neglected until recently in the case of C. elegans. We report a genetic investigation of the interaction of C. elegans with the nematode-specific pathogen Microbacterium nematophilum, which colonizes the rectum and causes distinctive tail swelling in its host. A total of 1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 187 1  شماره 

صفحات  -

تاریخ انتشار 2011