A classification of tournaments having an acyclic tournament as a minimum feedback arc set
نویسندگان
چکیده
Given a tournament with an acyclic tournament as a feedback arc set we give necessary and sufficient conditions for this feedback arc set to have minimum size.
منابع مشابه
Complete classification of tournaments having a disjoint union of directed paths as a minimum feedback arc set
A feedback arc set of a digraph is a set of arcs whose reversal makes the resulting digraph acyclic. Given a tournament with a disjoint union of directed paths as a feedback arc set, we present necessary and sufficient conditions for this feedback arc set to have minimum size. We will present a construction for tournaments where the difference between the size of a minimum feedback arc set and ...
متن کاملTournaments as Feedback Arc Sets
We examine the size s(n) of a smallest tournament having the arcs of an acyclic tournament on n vertices as a minimum feedback arc set. Using an integer linear programming formulation we obtain lower bounds s(n) ≥ 3n − 2 − blog2 nc or s(n) ≥ 3n − 1 − blog2 nc, depending on the binary expansion of n. When n = 2k − 2t we show that the bounds are tight with s(n) = 3n−2−blog2 nc. One view of this p...
متن کاملKernels for Feedback Arc Set In Tournaments
A tournament T = (V,A) is a directed graph in which there is exactly one arc between every pair of distinct vertices. Given a digraph on n vertices and an integer parameter k, the Feedback Arc Set problem asks whether the given digraph has a set of k arcs whose removal results in an acyclic digraph. The Feedback Arc Set problem restricted to tournaments is known as the k-Feedback Arc Set in Tou...
متن کاملRanking Tournaments
A tournament is an oriented complete graph. The feedback arc set problem for tournaments is the optimization problem of determining the minimum possible number of edges of a given input tournament T whose reversal makes T acyclic. Ailon, Charikar and Newman showed that this problem is NP-hard under randomized reductions. Here we show that it is in fact NP-hard. This settles a conjecture of Bang...
متن کاملArc-Disjoint Cycles and Feedback Arc Sets
Isaak posed the following problem. Suppose T is a tournament having a minimum feedback arc set which induces an acyclic digraph with a hamiltonian path. Is it true that the maximum number of arc-disjoint cycles in T equals the cardinality of minimum feedback arc set of T? We prove that the answer to the problem is in the negative. Further, we study the number of arc-disjoint cycles through a ve...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Inf. Process. Lett.
دوره 92 شماره
صفحات -
تاریخ انتشار 2004