On Polynomials of Sheffer Type Arising from a Cauchy Problem

نویسنده

  • D. G. MEREDITH
چکیده

A new sequence of eigenfunctions is developed and studied in depth. These theta polynomials are derived from a recent analytic solution of the canonical Cauchy problem for parabolic equations, namely, the inverse heat conduction problem. By appealing to the methods of the operator calculus, it is possible to categorize the new functions as polynomials of binomial and Sheffer types. The connection of the new set with the classical polynomials of Laguerre is carefully examined. Some integral relations involving the Laguerre polynomials and the theta polynomials are presented along with a number of binomial identities. The inverse heat conduction problem is revisited and an analytic solution depending on the generalized theta polynomials is presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Higher Order Degenerate Hermite-Bernoulli Polynomials Arising from $p$-Adic Integrals on $mathbb{Z}_p$

Our principal interest in this paper is to study higher order degenerate Hermite-Bernoulli polynomials arising from multivariate $p$-adic invariant integrals on $mathbb{Z}_p$. We give interesting identities and properties of these polynomials that are derived using the generating functions and $p$-adic integral equations. Several familiar and new results are shown to follow as special cases. So...

متن کامل

Minor Summation Formula and A Proof of Stanley’s Open Problem

In the open problem session of the FPSAC’03, R.P. Stanley gave an open problem about a certain sum of the Schur functions (See [22]). The purpose of this paper is to give a proof of this open problem. The proof consists of three steps. At the first step we express the sum by a Pfaffian as an application of our minor summation formula ([8]). In the second step we prove a Pfaffian analogue of Cau...

متن کامل

A Proof of Stanley’s Open Problem

In the open problem session of the FPSAC’03, R.P. Stanley gave an open problem about a certain sum of the Schur functions (See [19]). The purpose of this paper is to give a proof of this open problem. The proof consists of three steps. At the first step we express the sum by a Pfaffian as an application of our minor summation formula ([7]). In the second step we prove a Pfaffian analogue of Cau...

متن کامل

Multivariate Expansion Associated with Sheffer-type Polynomials and Operators

With the aid of multivariate Sheffer-type polynomials and differential operators, this paper provides two kinds of general expansion formulas, called respectively the first expansion formula and the second expansion formula, that yield a constructive solution to the problem of the expansion of A(t̂)f(ĝ(t)) (a composition of any given formal power series) and the expansion of the multivariate ent...

متن کامل

An Algebraic Exposition of Umbral Calculus with Application to General Linear Interpolation Problem – a Survey

A systematic exposition of Sheffer polynomial sequences via determinantal form is given. A general linear interpolation problem related to Sheffer sequences is considered. It generalizes many known cases of linear interpolation. Numerical examples and conclusions close the paper. 1. The modern umbral calculus In the 1970s Rota and his collaborators [17,19,20] began to construct a completely rig...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002