Modified Gravity Theories: Distinguishing from ΛCDM Model

نویسنده

  • Koichi Hirano
چکیده

The method and probability of distinguishing between the Λ cold dark matter (ΛCDM) model and modified gravity are studied from future observations for the growth rate of cosmic structure (Euclid redshift survey). We compare the mock observational data to the theoretical cosmic growth rate by modified gravity models, including the extended Dvali–Gabadadze–Porrati (DGP) model, kinetic gravity braiding model, and Galileon model. In the original DGP model, the growth rate fσ8 is suppressed in comparison with that in the ΛCDMmodel in the setting of the same value of the today’s energy density of matter Ωm;0, due to suppression of the effective gravitational constant. In the case of the kinetic gravity braiding model and the Galileon model, the growth rate fσ8 is enhanced in comparison with the ΛCDM model in the same value of Ωm;0, due to enhancement of the effective gravitational constant. For the cosmic growth rate data from the future observation (Euclid), the compatible value of Ωm;0 differs according to the model. Furthermore, Ωm;0 can be stringently constrained. Thus, we find the ΛCDM model is distinguishable from modified gravity by combining the growth rate data of Euclid with other observations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : 0 70 8 . 19 35 v 3 [ as tr o - ph ] 2 7 A ug 2 00 7 Testing modified gravity with globular cluster velocity dispersions

Globular clusters (GCs) in the Milky Way have characteristic velocity dispersions that are consistent with the predictions of Newtonian gravity, and may be at odds with Modified Newtonian Dynamics (MOND) and possibly the cold dark matter model. We discuss a modified gravity (MOG) theory that can successfully model the velocity dispersions of GCs in the Galactic neighborhood. MOG produces veloci...

متن کامل

ar X iv : 0 70 8 . 19 35 v 1 [ as tr o - ph ] 1 4 A ug 2 00 7 Testing modified gravity with globular cluster velocity dispersions

Globular clusters in the Milky Way have characteristic velocity dispersions that are consistent with the predictions of Newtonian gravity, and may be at odds with Modified Newtonian Dynamics (MOND) and possibly the cold dark matter model. We discuss a modified gravity (MOG) theory that can successfully model the velocity dispersions of GCs in the Galactic neighborhood. MOG produces velocity dis...

متن کامل

Probing scalar tensor theories for gravity in Redshift-Space

We present measurements of the spatial clustering statistics in redshift space of various scalar field modified gravity simulations. We utilise the two-point and the three-point correlation functions to quantify the spatial distribution of dark matter halos within these simulations and thus discern between the models. We compare ΛCDM simulations to various modified gravity scenarios and find co...

متن کامل

ar X iv : 0 70 8 . 19 35 v 2 [ as tr o - ph ] 1 6 A ug 2 00 7 Testing modified gravity with globular cluster velocity dispersions

Globular clusters in the Milky Way have characteristic velocity dispersions that are consistent with the predictions of Newtonian gravity, and may be at odds with Modified Newtonian Dynamics (MOND) and possibly the cold dark matter model. We discuss a modified gravity (MOG) theory that can successfully model the velocity dispersions of GCs in the Galactic neighborhood. MOG produces velocity dis...

متن کامل

Spherical collapse in modified gravity with the Birkhoff-theorem

We study structure formation in a phenomenological model of modified gravity which interpolates between ΛCDM and phenomenological DGP-gravity. Generalisation of spherical collapse by using the Birkhoff-theorem along with the modified growth equation shows that the overdensity for spherical collapse δc in these models is significantly lowered compared to ΛCDM, leading to enhanced number densitie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018