Towards More Efficient SPSD Matrix Approximation and CUR Matrix Decomposition

نویسندگان

  • Shusen Wang
  • Zhihua Zhang
  • Tong Zhang
چکیده

Symmetric positive semi-definite (SPSD) matrix approximation methods have been extensively used to speed up large-scale eigenvalue computation and kernel learning methods. The standard sketch based method, which we call the prototype model, produces relatively accurate approximations, but is inefficient on large square matrices. The Nyström method is highly efficient, but can only achieve low accuracy. In this paper we propose a novel model that we call the fast SPSD matrix approximation model. The fast model is nearly as efficient as the Nyström method and as accurate as the prototype model. We show that the fast model can potentially solve eigenvalue problems and kernel learning problems in linear time with respect to the matrix size n to achieve 1 + relative-error, whereas both the prototype model and the Nyström method cost at least quadratic time to attain comparable error bound. Empirical comparisons among the prototype model, the Nyström method, and our fast model demonstrate the superiority of the fast model. We also contribute new understandings of the Nyström method. The Nyström method is a special instance of our fast model and is approximation to the prototype model. Our technique can be straightforwardly applied to make the CUR matrix decomposition more efficiently computed without much affecting the accuracy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towards More Efficient Nystrom Approximation and CUR Matrix Decomposition

Symmetric positive semi-definite (SPSD) matrix approximation methods have been extensively used to speed up large-scale eigenvalue computation and kernel learning methods. The sketching based method, which we call the prototype model, produces relatively accurate approximations. The prototype model is computationally efficient on skinny matrices where one of the matrix dimensions is relatively ...

متن کامل

SPSD Matrix Approximation vis Column Selection: Theories, Algorithms, and Extensions

Symmetric positive semidefinite (SPSD) matrix approximation is an important problem with applications in kernel methods. However, existing SPSD matrix approximation methods such as the Nyström method only have weak error bounds. In this paper we conduct in-depth studies of an SPSD matrix approximation model and establish strong relative-error bounds. We call it the prototype model for it has mo...

متن کامل

The Modified Nystrom Method: Theories, Algorithms, and Extension

Symmetric positive semidefinite (SPSD) matrix approximation is an important problem with applications in kernel methods. However, existing SPSD matrix approximation methods such as the Nyström method only have weak error bounds. In this paper we conduct in-depth studies of an SPSD matrix approximation model and establish strong relative-error bounds. We call it the prototype model for it has mo...

متن کامل

Tighter bound of Sketched Generalized Matrix Approximation

Generalized matrix approximation plays a fundamental role in many machine learning problems, such as CUR decomposition, kernel approximation, and matrix low rank approximation. Especially with Today’s applications involved in larger and larger dataset, more and more efficient generalized matrix approximation algorithems become a crucially important research issue. In this paper, we find new ske...

متن کامل

Improving CUR matrix decomposition and the Nyström approximation via adaptive sampling

The CUR matrix decomposition and the Nyström approximation are two important lowrank matrix approximation techniques. The Nyström method approximates a symmetric positive semidefinite matrix in terms of a small number of its columns, while CUR approximates an arbitrary data matrix by a small number of its columns and rows. Thus, CUR decomposition can be regarded as an extension of the Nyström a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Machine Learning Research

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2016