Sensory Map Transfer to the Neocortex Relies on Pretarget Ordering of Thalamic Axons
نویسندگان
چکیده
Sensory maps, such as the representation of mouse facial whiskers, are conveyed throughout the nervous system by topographic axonal projections that preserve neighboring relationships between adjacent neurons. In particular, the map transfer to the neocortex is ensured by thalamocortical axons (TCAs), whose terminals are topographically organized in response to intrinsic cortical signals. However, TCAs already show a topographic order early in development, as they navigate toward their target. Here, we show that this preordering of TCAs is required for the transfer of the whisker map to the neocortex. Using Ebf1 conditional inactivation that specifically perturbs the development of an intermediate target, the basal ganglia, we scrambled TCA topography en route to the neocortex without affecting the thalamus or neocortex. Notably, embryonic somatosensory TCAs were shifted toward the visual cortex and showed a substantial intermixing along their trajectory. Somatosensory TCAs rewired postnatally to reach the somatosensory cortex but failed to form a topographic anatomical or functional map. Our study reveals that sensory map transfer relies not only on positional information in the projecting and target structures but also on preordering of axons along their trajectory, thereby opening novel perspectives on brain wiring.
منابع مشابه
Proteoglycan-Mediated Axon Degeneration Corrects Pretarget Topographic Sorting Errors
Proper arrangement of axonal projections into topographic maps is crucial for brain function, especially in sensory systems. An important mechanism for map formation is pretarget axon sorting, in which topographic ordering of axons appears in tracts before axons reach their target, but this process remains poorly understood. Here, we show that selective axon degeneration is used as a correction...
متن کاملPathfinding of Corticothalamic Axons Relies on a Rendezvous with Thalamic Projections
Major outputs of the neocortex are conveyed by corticothalamic axons (CTAs), which form reciprocal connections with thalamocortical axons, and corticosubcerebral axons (CSAs) headed to more caudal parts of the nervous system. Previous findings establish that transcriptional programs define cortical neuron identity and suggest that CTAs and thalamic axons may guide each other, but the mechanisms...
متن کاملDraxin from neocortical neurons controls the guidance of thalamocortical projections into the neocortex
The thalamocortical tract carries sensory information to the neocortex. It has long been recognized that the neocortical pioneer axons of subplate neurons are essential for thalamocortical development. Herein we report that an axon guidance cue, draxin, is expressed in early-born neocortical neurons, including subplate neurons, and is necessary for thalamocortical development. In draxin(-/-) mi...
متن کاملLaminar specific attachment and neurite outgrowth of thalamic neurons on cultured slices of developing cerebral neocortex.
In nervous system development, the growth cones of advancing axons are thought to navigate to their targets by recognizing cell-surface and extracellular matrix molecules that act as specific guidance cues. To identify and map cues that guide the growth of a particular axonal system, the thalamocortical afferents, an assay was devised to examine short-term interactions of dissociated embryonic ...
متن کاملCortex is driven by weak but synchronously active thalamocortical synapses.
Sensory stimuli reach the brain via the thalamocortical projection, a group of axons thought to be among the most powerful in the neocortex. Surprisingly, these axons account for only approximately 15% of synapses onto cortical neurons. The thalamocortical pathway might thus achieve its effectiveness via high-efficacy thalamocortical synapses or via amplification within cortical layer 4. In rat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 23 شماره
صفحات -
تاریخ انتشار 2013