Tests on Semi-Lagrangian Transport and Interpolation

نویسنده

  • M. van Loon
چکیده

In air pollution models, semi-Lagrangian methods are often used to solve the ad-vective part of the corresponding model equation. Interpolation is an essential part of these methods. In this note, ve diierent interpolation methods will be discussed and results of numerical experiments will be presented. To keep the concentration eld nonnegative, ltering techniques are used. Also a monotone interpolation method is examined.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mesh-free Semi-Lagrangian Methods for Transport on a Sphere Using Radial Basis Functions

We present three new semi-Lagrangian methods based on radial basis function (RBF) interpolation for numerically simulating transport on a sphere. The methods are mesh-free and are formulated entirely in Cartesian coordinates, thus avoiding any irregular clustering of nodes at artificial boundaries on the sphere and naturally bypassing any apparent artificial singularities associated with surfac...

متن کامل

A Semi-largangian Method on Dynamically Adapted Octree Meshes

The paper develops a semi-Lagrangian method for the numerical integration of the transport equation discretized on adaptive Cartesian cubic meshes. We use dynamically adaptive graded Cartesian grids. They allows for a fast grid reconstruction in the course of numerical integration. The suggested semi-Lagrangian method uses a higher order interpolation with a limiting strategy and a back-and-for...

متن کامل

particle - mesh semi - Lagrangian advection scheme

We describe the remapped particle-mesh method, a new mass-conserving method for solving the density equation which is suitable for combining with semi-Lagrangian methods for compressible flow applied to numerical weather prediction. In addition to the conservation property, the remapped particle-mesh method is computationally efficient and at least as accurate as current semi-Lagrangian methods...

متن کامل

A semi-Lagrangian AMR scheme for 2D transport problems in conservation form

In this paper, we construct a semi-Lagrangian (SL) Adaptive-Mesh-Refinement (AMR) solver for 1D and 2D transport problems in conservation form. First, we describe the à-la-Harten AMR framework: the adaptation process selects a hierarchical set of grids with different resolutions depending on the features of the integrand function, using as criteria the point value prediction via interpolation f...

متن کامل

A semi-Lagrangian scheme with radial basis approximation for surface reconstruction

We propose a Semi-Lagrangian scheme coupled with Radial Basis Function interpolation for approximating a curvature-related level set model, which has been proposed by Zhao et al. in [19] to reconstruct unknown surfaces from sparse, possibly noisy data sets. The main advantages of the proposed scheme are the possibility to solve the level set method on unstructured grids, as well as to concentra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007