A Hausdorff dimension for finite sets

نویسنده

  • Juan M. Alonso
چکیده

The classical Hausdorff dimension, denoted dimH , of finite or countable sets is zero. We define an analog for finite sets, called finite Hausdorff dimension and denoted dimfH , which is non-trivial. It turns out that a finite bound for dimfH (F ) guarantees that every point of F has ”nearby” neighbors. This property is important for many computer algorithms of great practical value, that obtain solutions by finding nearest neighbors. We also define dimfB , an analog for finite sets of the classical box-counting dimension, and compute examples. The main result of the paper is a Convergence Theorem. It gives conditions under which, if Fn → X (convergence of compact subsets of Rn under the Hausdorff metric), then dimfH (Fn) → dimH (X).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hausdorff Dimension and Hausdorff Measure for Non-integer based Cantor-type Sets

We consider digits-deleted sets or Cantor-type sets with β-expansions. We calculate the Hausdorff dimension d of these sets and show that d is continuous with respect to β. The d-dimentional Hausdorff measure of these sets is finite and positive.

متن کامل

Finite-State Dimension of Individual Sequences

I Classical Hausdorff Dimension (Fractal Dimension) I Lutz’s Effectivization of Hausdorff Dimension via gales [4] I The Cantor Space C I Restriction of gales to Complexity Classes endows sets with dimension within the complexity class. I Constructive Dimension, Resource Bounded Dimension I Zero-dimensional sets can have positive dimension I Lowest level: finite-state machines → Finite-State Dim...

متن کامل

Fractal Dimensions and Von Neumann Algebras

Using Voiculescu’s notion of a matricial microstate we introduce fractal dimensions and entropy for finite sets of self-adjoint operators in a tracial von Neumann algebra. We show that they possess properties similar to their classical predecessors. We relate the new quantities to free entropy and free entropy dimension and show that a modified version of free Hausdorff dimension is an algebrai...

متن کامل

Fractal Entropies and Dimensions for Microstates Spaces

Using Voiculescu’s notion of a matricial microstate we introduce fractal dimensions and entropies for finite sets of selfadjoint operators in a tracial von Neumann algebra. We show that they possess properties similar to their classical predecessors. We relate the new quantities to free entropy and free entropy dimension and show that a modified version of free Hausdorff dimension is an algebra...

متن کامل

Dimension and Relative Frequencies

We show how to calculate the finite-state dimension (equivalently, the finite-state compressibility) of a saturated sets X consisting of all infinite sequences S over a finite alphabet Σm satisfying some given condition P on the asymptotic frequencies with which various symbols from Σm appear in S. When the condition P completely specifies an empirical probability distribution π over Σm, i.e., ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1508.02946  شماره 

صفحات  -

تاریخ انتشار 2015