Simulating gas-aerosol-cirrus interactions: Process-oriented microphysical model and applications

نویسنده

  • B. Kärcher
چکیده

This work describes a process-oriented, microphysical-chemical model to simulate the formation and evolution of aerosols and ice crystals under the conditions prevailing in the upper troposphere and lower stratosphere. The model can be run as a box model or along atmospheric trajectories, and considers mixing, gas phase chemistry of aerosol precursors, binary homogeneous aerosol nucleation, homogeneous and heterogeneous ice nucleation, coagulation, condensation and dissolution, gas retention during particle freezing, gas trapping in growing ice crystals, and reverse processes. Chemical equations are solved iteratively using a second order implicit integration method. Gas-particle interactions and coagulation are treated over various size structures, with fully mass conserving and non-iterative numerical solution schemes. Particle types include quinternary aqueous solutions composed of H2SO4, HNO3, HCl, and HBr with and without insoluble components, insoluble aerosol particles, and spherical or columnar ice crystals deriving from each aerosol type separately. Three case studies are discussed in detail to demonstrate the potential of the model to simulate real atmospheric processes and to highlight current research topics concerning aerosol and cirrus formation near the tropopause. Emphasis is placed on how the formation of cirrus clouds and the scavenging of nitric acid in cirrus depends on small-scale temperature fluctuations and the presence of efficient ice nuclei in the tropopause region, corroborating and partly extending the findings of previous studies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gas-aerosol-cirrus interactions

This work describes a process-oriented, microphysical-chemical model to simulate the formation and evolution of aerosols and ice crystals under the conditions prevailing in the upper troposphere and lower stratosphere. The model can be run as a box model or along atmospheric trajectories, and considers mixing, gas phase chemistry 5 of aerosol precursors, binary homogeneous aerosol nucleation, h...

متن کامل

Development of a Detailed Microphysics Cirrus Model Tracking Aerosol Particles’ Histories for Interpretation of the Recent INCA Campaign

Cirrus clouds play an important role in the earth’s energy balance. To quantify their impact, information is needed on their microstructure and more precisely on the number and size of the ice crystals. With the anthropogenic activity, more and more aerosol particles and water vapor are released even at the altitude where cirrus clouds are formed. Cirrus clouds formed in a polluted air mass may...

متن کامل

Retrieval of Cirrus Microphysical Properties with a Suite of Algorithms for Airborne and Spaceborne Lidar, Radar, and Radiometer Data

Algorithms are developed to convert data streams from multiple airborne and spaceborne remote sensors into layer-averaged cirrus bulk microphysical properties. Radiometers such as the Moderate-Resolution Imaging Spectroradiometer (MODIS) observe narrowband spectral radiances, and active remote sensors such as the lidar on the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observation (CA...

متن کامل

In-situ observations and modeling of small nitric acid-containing ice crystals

Measurements in nascent ice forming regions are very rare and help understand cirrus cloud formation and the interactions of trace gases with ice crystals. A tenuous cirrus cloud has been probed with in-situ and remote sensing instruments onboard the high altitude research aircraft Geophysica M55 in the tropical upper troposphere. Besides microphysical and optical particle properties, water (H2...

متن کامل

Small Ice Crystals in Cirrus Clouds: A Model Study and Comparison with In Situ Observations

An air parcel model including homogeneous freezing nucleation of ice crystals has been used to study the formation and development of cirrus clouds. In situ measurements taken during March 1994 over southern Germany were used for comparison with model predictions. Typical experimental data were chosen for a basecase model run. Using measured aerosol properties as input values, the model predict...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003