Functional connectivity analysis of distracted drivers based on the wavelet phase coherence of functional near-infrared spectroscopy signals

نویسندگان

  • Gongcheng Xu
  • Ming Zhang
  • Yan Wang
  • Zhian Liu
  • Congcong Huo
  • Zengyong Li
  • Mengyou Huo
چکیده

The present study aimed to evaluate the functional connectivity (FC) in relevant cortex areas during simulated driving with distraction based on functional near-infrared spectroscopy (fNIRS) method. Twelve subjects were recruited to perform three types of driving tasks, namely, straight driving, straight driving with secondary auditory task, and straight driving with secondary visual vigilance task, on a driving simulator. The wavelet amplitude (WA) and wavelet phase coherence (WPCO) of the fNIRS signals were calculated in six frequency intervals: I, 0.6-2 Hz; II, 0.145-0.6 Hz; III, 0.052-0.145 Hz; IV, 0.021-0.052 Hz; and V, 0.0095-0.021 Hz, VI, 0.005-0.0095Hz. Results showed that secondary tasks during driving led to worse driving performance, brain activity changes, and dynamic configuration of the connectivity. The significantly lower WA value in the right motor cortex in interval IV, and higher WPCO values in intervals II, V, and VI were found with additional auditory task. Significant standard deviation of speed and lower WA values in the left prefrontal cortex and right prefrontal cortex in interval VI, and lower WPCO values in intervals I, IV, V, and VI were found under the additional visual vigilance task. The results suggest that the changed FC levels in intervals IV, V, and VI were more likely to reflect the driver's distraction condition. The present study provides new insights into the relationship between distracted driving behavior and brain activity. The method may be used for the evaluation of drivers' attention level.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wavelet coherence analysis of prefrontal tissue oxyhaemoglobin signals as measured using near-infrared spectroscopy in elderly subjects with cerebral infarction.

This study aims to assess the prefrontal functional connectivity using wavelet coherence analysis of cerebral tissue oxyhaemoglobin concentration (Delta [HbO2]) signals in elderly subjects with cerebral infarction (CI) during the resting state. Continuous recordings of near-infrared spectroscopy (NIRS) signals were obtained from the left and right prefrontal lobes in 10 subjects with CI (age: 7...

متن کامل

Age-related alterations in phase synchronization of oxyhemoglobin concentration changes in prefrontal tissues as measured by near-infrared spectroscopy signals.

The prefrontal cortex plays an important role in planning complex cognitive behavior, personality expression, and decision making. This study aims to assess the phase synchronization of signals of the oxyhemoglobin concentration changes (Δ[HbO2]) in the left and right prefrontal tissues through near-infrared spectroscopy (NIRS) with wavelet phase coherence (WPCO) method. The NIRS signals were c...

متن کامل

Vigilance Task-Related Change in Brain Functional Connectivity as Revealed by Wavelet Phase Coherence Analysis of Near-Infrared Spectroscopy Signals

This study aims to assess the vigilance task-related change in connectivity in healthy adults using wavelet phase coherence (WPCO) analysis of near-infrared spectroscopy signals (NIRS). NIRS is a non-invasive neuroimaging technique for assessing brain activity. Continuous recordings of the NIRS signals were obtained from the prefrontal cortex (PFC) and sensorimotor cortical areas of 20 young he...

متن کامل

Time-frequency dynamics of the sum of intra- and extracerebral hemodynamic functional connectivity during resting-state and respiratory challenges assessed by multimodal functional near-infrared spectroscopy

Monitoring respiratory processes is important for evaluating neuroimaging data, given their influence on time-frequency dynamics of intra- and extracerebral hemodynamics. Here we investigated the time-frequency dynamics of the sum of intra- and extracerebral hemodynamic functional connectivity states during hypo- and hypercapnia by using three different respiratory challenge tasks (i.e., hyperv...

متن کامل

Activation detection in functional near-infrared spectroscopy by wavelet coherence.

Functional near-infrared spectroscopy (fNIRS) detects hemodynamic responses in the cerebral cortex by transcranial spectroscopy. However, measurements recorded by fNIRS not only consist of the desired hemodynamic response but also consist of a number of physiological noises. Because of these noises, accurately detecting the regions that have an activated hemodynamic response while performing a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017