The structure of legume–rhizobium interaction networks and their response to tree invasions

نویسندگان

  • Johannes J. Le Roux
  • Natasha R. Mavengere
  • Allan G. Ellis
چکیده

Establishing mutualistic interactions in novel environments is important for the successful establishment of some non-native plant species. These associations may, in turn, impact native species interaction networks as non-natives become dominant in their new environments. Using phylogenetic and ecological interaction network approaches we provide the first report of the structure of belowground legume-rhizobium interaction networks and how they change along a gradient of invasion (uninvaded, semi invaded and heavily invaded sites) by Australian Acacia species in South Africa's Cape Floristic Region. We found that native and invasive legumes interact with distinct rhizobial lineages, most likely due to phylogenetic uniqueness of native and invasive host plants. Moreover, legume-rhizobium interaction networks are not nested, but significantly modular with high levels of specialization possibly as a result of legume-rhizobium co-evolution. Although network topology remained constant across the invasion gradient, composition of bacterial communities associated with native legumes changed dramatically as acacias increasingly dominated the landscape. In stark contrast to aboveground interaction networks (e.g. pollination and seed dispersal) we show that invasive legumes do not infiltrate existing native legume-rhizobium networks but rather form novel modules. This absence of mutualist overlap between native and invasive legumes suggests the importance of co-invading rhizobium-acacia species complexes for Acacia invasion success, and argues against a ubiquitous role for the formation and evolutionary refinement of novel interactions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mutualism and Adaptive Divergence: Co-Invasion of a Heterogeneous Grassland by an Exotic Legume-Rhizobium Symbiosis

Species interactions play a critical role in biological invasions. For example, exotic plant and microbe mutualists can facilitate each other's spread as they co-invade novel ranges. Environmental context may influence the effect of mutualisms on invasions in heterogeneous environments, however these effects are poorly understood. We examined the mutualism between the legume, Medicago polymorph...

متن کامل

Evaluation of the Effect of Intercropping Sugarcane - Legume on the Quantitative, Qualitative and Physiological Characteristics of Sugarcane

In order to investigate the effect of different treatments of  intercropping sugarcane with two types of legumes on some quantitative and qualitative propertys of sugarcane, an experiment was conducted in a randomized complete block design with 14 treatments and four replications in two locations in Ahvaz, Iran in 2016-2017. The treatments included: Pure Sugarcane, Pure Soybean, Pure Cowpea, Pu...

متن کامل

Coevolutionary Constraints? The Environment Alters Tripartite Interaction Traits in a Legume

Third party species, which interact with one or both partners of a pairwise species interaction, can shift the ecological costs and the evolutionary trajectory of the focal interaction. Shared genes that mediate a host's interactions with multiple partners have the potential to generate evolutionary constraints, making multi-player interactions critical to our understanding of the evolution of ...

متن کامل

Structure-function analysis of nod factor-induced root hair calcium spiking in Rhizobium-legume symbiosis.

In the Rhizobium-legume symbiosis, compatible bacteria and host plants interact through an exchange of signals: Host compounds promote the expression of bacterial biosynthetic nod (nodulation) genes leading to the production of a lipochito-oligosaccharide signal, the Nod factor (NF). The particular array of nod genes carried by a given species of Rhizobium determines the NF structure synthesize...

متن کامل

Construction and Analysis of Tissue-Specific Protein-Protein Interaction Networks in Humans

We have studied the changes in protein-protein interaction network of 38 different tissues of the human body. 123 gene expression samples from these tissues were used to construct human protein-protein interaction network. This network is then pruned using the gene expression samples of each tissue to construct different protein-protein interaction networks corresponding to different studied ti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2016