Co-electrolysis of steam and CO2 in full-ceramic symmetrical SOECs: a strategy for avoiding the use of hydrogen as a safe gas.
نویسندگان
چکیده
The use of cermets as fuel electrodes for solid oxide electrolysis cells requires permanent circulation of reducing gas, e.g. H2 or CO, so called safe gas, in order to avoid oxidation of the metallic phase. Replacing metallic based electrodes by pure oxides is therefore proposed as an advantage for the industrial application of solid oxide electrolyzers. In this work, full-ceramic symmetrical solid oxide electrolysis cells have been investigated for steam/CO2 co-electrolysis. Electrolyte supported cells with La(0.75)Sr(0.25)Cr(0.5)Mn(0.5)O3-δ reversible electrodes have been fabricated and tested in co-electrolysis mode using different fuel compositions, from pure H2O to pure CO2, at temperatures between 850-900 °C. Electrochemical impedance spectroscopy and galvanostatic measurements have been carried out for the mechanistic understanding of the symmetrical cell performance. The content of H2 and CO in the product gas has been measured by in-line gas micro-chromatography. The effect of employing H2 as a safe gas has also been investigated. Maximum density currents of 750 mA cm(-2) and 620 mA cm(-2) have been applied at 1.7 V for pure H2O and for H2O : CO2 ratios of 1 : 1, respectively. Remarkable results were obtained for hydrogen-free fuel compositions, which confirmed the interest of using ceramic oxides as a fuel electrode candidate to reduce or completely avoid the use of safe gas in operation minimizing the contribution of the reverse water shift reaction (RWSR) in the process. H2 : CO ratios close to two were obtained for hydrogen-free tests fulfilling the basic requirements for synthetic fuel production. An important increase in the operation voltage was detected under continuous operation leading to a dramatic failure by delaminating of the oxygen electrode.
منابع مشابه
An Investigate on Power, Torque and Exhaust Gas Emission Variation: Effect of Hydroxy Gas Addition to Inlet Air of a SI Engine
Hydrogen has been known as a clean and suitable fuel to replace conventional fossil fuels. One of the common hydrogen production methods is using water electrolysis process. This method produces oxygen as well as hydrogen by ratio of 1:2. The aim of this work is to investigate the effects of inlet air enrichment by adding produced hydrogen and oxygen to an internal combustion engine. For this p...
متن کاملSimultaneous high hydrogen content-synthesis gas production and in-situ CO2 removal via sorption-enhanced reaction process: modeling, sensitivity analysis and multi-objective optimization using NSGA-II algorithm
The main focus of this study is improvement of the steam-methane reforming (SMR) process by in-situ CO2 removal to produce high hydrogen content synthesis gas. Sorption-enhanced (SE) concept is applied to improve process performance. In the proposed structure, the solid phase CO2 adsorbents and pre-reformed gas stream are introduced to a gas-flowing solids-fixed bed reactor (GFSFBR). One dimens...
متن کاملMaterials Development for Improved Efficiency of Hydrogen Production by Steam Electrolysis and Thermochemical-Electrochemical Processes
We are investigating two processes as potential sources of hydrogen for the “hydrogen economy”. One of these hydrogen production processes is water electrolysis at high temperatures using heat from a nuclear reactor, known as high temperature steam electrolysis (HTSE). The feasibility of this process is currently being demonstrated at Idaho National Laboratory using solid oxide fuel cell design...
متن کاملThe significance of key operational variables to the enhancement of hydrogen production in a single-chamber microbial electrolysis cell (MEC)
Microbial electrolysis cell (MEC) is one of the promising and cutting-edge technologies for generating hydrogen from wastewater through biodegradation of organic waste by exoelectrogenic microbes. In the MECs, the operational parameters, such as applied voltage (Eap), anode surface area, anode-cathode distance, and N2/CO2 volume ratio have a significant impact on the hydrogen yield and producti...
متن کاملSyngas (CO-H2) production using high temperature micro-tubular solid oxide electrolysers
CO2 and/or H2O were reduced to CO/H2 in micro-tubular solid oxide electrolysers with yttria-stabilized zirconia (YSZ) electrolyte, Ni-YSZ cermet cathode and strontium(II)-doped lanthanum manganite (LSM) oxygen-evolving anode. At 822 C, the kinetics of CO2 reduction were slower (ca. 0.49 A cm 2 at 1.8 V) than H2O reduction or co-reduction of CO2 and H2O, which were comparable (ca. 0.83 to 0.77 A...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Faraday discussions
دوره 182 شماره
صفحات -
تاریخ انتشار 2015