Perfect Matchings, Tilings and Hamilton Cycles in Hypergraphs

نویسندگان

  • Jie Han
  • JIE HAN
  • Yi Zhao
  • Guantao Chen
  • Peter Keevash
  • Hein van der Holst
چکیده

This thesis contains problems in finding spanning subgraphs in graphs, such as, perfect matchings, tilings and Hamilton cycles. First, we consider the tiling problems in graphs, which are natural generalizations of the matching problems. We give new proofs of the multipartite Hajnal-Szemerédi Theorem for the tripartite and quadripartite cases. Second, we consider Hamilton cycles in hypergraphs. In particular, we determine the minimum codegree thresholds for Hamilton `-cycles in large k-uniform hypergraphs for ` < k/2. We also determine the minimum vertex degree threshold for loose Hamilton cycle in large 3-uniform hypergraphs. These results generalize the well-known theorem of Dirac for

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Forbidding Hamilton cycles in uniform hypergraphs

For 1 ≤ d ≤ ` < k, we give a new lower bound for the minimum d-degree threshold that guarantees a Hamilton `-cycle in k-uniform hypergraphs. When k ≥ 4 and d < ` = k − 1, this bound is larger than the conjectured minimum d-degree threshold for perfect matchings and thus disproves a wellknown conjecture of Rödl and Ruciński. Our (simple) construction generalizes a construction of Katona and Kier...

متن کامل

Matchings and Tilings in Hypergraphs

We consider two extremal problems in hypergraphs. First, given k ≥ 3 and k-partite k-uniform hypergraphs, as a generalization of graph (k = 2) matchings, we determine the partite minimum codegree threshold for matchings with at most one vertex left in each part, thereby answering a problem asked by Rödl and Ruciński. We further improve the partite minimum codegree conditions to sum of all k par...

متن کامل

Perfect matchings (and Hamilton cycles) in hypergraphs with large degrees

We establish a new lower bound on the l-wise collective minimum degree which guarantees the existence of a perfect matching in a k-uniform hypergraph, where 1 ≤ l < k/2. For l = 1, this improves a long standing bound by Daykin and Häggkvist [4]. Our proof is a modification of the approach of Han, Person, and Schacht from [8]. In addition, we fill a gap left by the results solving a similar ques...

متن کامل

Matchings, Hamilton cycles and cycle packings in uniform hypergraphs

It is well known that every bipartite graph with vertex classes of size nwhose minimum degree is at least n/2 contains a perfect matching. We prove an analogue of this result for uniform hypergraphs. We also provide an analogue of Dirac’s theorem on Hamilton cycles for 3-uniform hypergraphs: We say that a 3-uniform hypergraph has a Hamilton cycle if there is a cyclic ordering of its vertices su...

متن کامل

Packing hamilton cycles in random and pseudo-random hypergraphs

We say that a k-uniform hypergraph C is a Hamilton cycle of type `, for some 1 ≤ ` ≤ k, if there exists a cyclic ordering of the vertices of C such that every edge consists of k consecutive vertices and for every pair of consecutive edges Ei−1, Ei in C (in the natural ordering of the edges) we have |Ei−1 \ Ei| = `. We prove that for k/2 < ` ≤ k, with high probability almost all edges of the ran...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015