Selection of Input Parameters for Multivariate Classifiers in Proactive Machine Health Monitoring by Clustering Envelope Spectrum Harmonics

نویسندگان

  • Ann Smith
  • Fengshou Gu
  • Andrew Ball
چکیده

In condition monitoring (CM) signal analysis the inherent problem of key characteristics being masked by noise can be addressed by analysis of the signal envelope. Envelope analysis of vibration signals is effective in extracting useful information for diagnosing different faults. However, the number of envelope features is generally too large to be effectively incorporated in system models. In this paper a novel method of extracting the pertinent information from such signals based on multivariate statistical techniques is developed which substantialy reduces the number of input parameters required for data classification models. This was achieved by clustering possible model variables into a number of homogeneous groups to assertain levels of interdependency. Representatives from each of the groups were selected for their power to discriminate between the categorical classes. The techniques established were applied to a reciprocating compressor rig wherein the target was identifying machine states with respect to operational health through comparison of signal outputs for healthy and faulty systems. The technique allowed near perfect fault classification. In addition methods for identifying seperable classes are investigated through profiling techniques, illustrated using Andrew’s Fourier curves.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

"selection of Input Parameters for Multivariate Classifiersin Proactive Machine Health Monitoring by Clustering Envelope Spectrum Harmonics" Original Citation Selection of Input Parameters for Multivariate Classifiers in Proactive Machine Health Monitoring by Clustering Envelope Spectrum Harmonics

In condition monitoring (CM) signal analysis the inherent problem of key characteristics being masked by noise can be addressed by analysis of the signal envelope. Envelope analysis of vibration signals is effective in extracting useful information for diagnosing different faults. However, the number of envelope features is generally too large to be effectively incorporated in system models. In...

متن کامل

An Efficient Framework for Accurate Arterial Input Selection in DSC-MRI of Glioma Brain Tumors

Introduction: Automatic arterial input function (AIF) selection has an essential role in quantification of cerebral perfusion parameters. The purpose of this study is to develop an optimal automatic method for AIF determination in dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) of glioma brain tumors by using a new preprocessing method.Material and Methods: For this study, ...

متن کامل

Intelligent Health Evaluation Method of Slewing Bearing Adopting Multiple Types of Signals from Monitoring System

Slewing bearing, which is widely applied in tank, excavator and wind turbine, is a critical component of rotational machine. Standard procedure for bearing life calculation and condition assessment was established in general rolling bearings, nevertheless, relatively less literatures, in regard to the health condition assessment of slewing bearing, were published in past. Real time health condi...

متن کامل

Proposing an Intelligent Monitoring System for Early Prediction of Need for Intubation among COVID-19 Hospitalized Patients

Introduction: Predicting acute respiratory insufficiency due to coronavirus disease 2019 (COVID-19) can diminish the severe complications and mortality associated with the disease. This study aimed to develop an intelligent system based on machine learning (ML) models for frontline clinicians to effectively triage high-risk patients and prioritize who needs mechanical intubation (MI). Material...

متن کامل

Support Vector Machine Based Facies Classification Using Seismic Attributes in an Oil Field of Iran

Seismic facies analysis (SFA) aims to classify similar seismic traces based on amplitude, phase, frequency, and other seismic attributes. SFA has proven useful in interpreting seismic data, allowing significant information on subsurface geological structures to be extracted. While facies analysis has been widely investigated through unsupervised-classification-based studies, there are few cases...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015