Effects of Manipulated Above- and Belowground Organic Matter Input on Soil Respiration in a Chinese Pine Plantation
نویسندگان
چکیده
Alteration in the amount of soil organic matter input can have profound effect on carbon dynamics in forest soils. The objective of our research was to determine the response in soil respiration to above- and belowground organic matter manipulation in a Chinese pine (Pinus tabulaeformis) plantation. Five organic matter treatments were applied during a 2-year experiment: both litter removal and root trenching (LRRT), only litter removal (LR), control (CK), only root trenching (RT) and litter addition (LA). We found that either aboveground litter removal or root trenching decreased soil respiration. On average, soil respiration rate was significantly decreased in the LRRT treatment, by about 38.93% ± 2.01% compared to the control. Soil respiration rate in the LR treatment was 30.65% ± 1.87% and in the RT treatment 17.65% ± 1.95% lower than in the control. Litter addition significantly increased soil respiration rate by about 25.82% ± 2.44% compared to the control. Soil temperature and soil moisture were the main factors affecting seasonal variation in soil respiration. Up to the 59.7% to 82.9% seasonal variation in soil respiration is explained by integrating soil temperature and soil moisture within each of the various organic matter treatments. The temperature sensitivity parameter, Q10, was higher in the RT (2.72) and LA (3.19) treatments relative to the control (2.51), but lower in the LRRT (1.52) and LR treatments (1.36). Our data suggest that manipulation of soil organic matter input can not only alter soil CO2 efflux, but also have profound effect on the temperature sensitivity of organic carbon decomposition in a temperate pine forest.
منابع مشابه
The Effect of Different Land Uses on New Indices of Soil Quality in Central Alborz Region
Different land uses have various effects on the changes of soil properties. The purpose of this study was to evaluate the effects of natural forest, needle-leaved plantation and rangelands of central Alborz on new indices of soil quality (i.e. organic matter stratification, carbon management index and soil biological activities). For this purpose, eight samples from organic layer (litter) and m...
متن کاملEffect of plantation with native and exotic species on soil CO2 emissions
The aim of this study was to investigate soil respiration in the plantation stands of Acer velutinum, Quercus castaneifolia, Fraxinus excelsior and Pinus brutia and to compare them with the natural stands in Sari educational-research forest of Darabkola. In order to measure physical and chemical properties of soil in each stand, 10 points were selected systematic randomly and samples were taken...
متن کاملInfluences of canopy photosynthesis and summer rain pulses on root dynamics and soil respiration in a young ponderosa pine forest.
Our first objective was to link the seasonality of fine root dynamics with soil respiration in a ponderosa pine (Pinus ponderosa P. & C. Lawson) plantation located in the Sierra Nevada of California. The second objective was to examine how canopy photosynthesis influences fine root initiation, growth and mortality in this ecosystem. We compared CO2 flux measurements with aboveground and belowgr...
متن کاملCarbon Fluxes in the Rhizosphere
Terrestrial ecosystems are intimately connected to atmospheric CO2 levels through photosynthetic fixation of CO2, sequestration of C into biomass and soils, and the subsequent release of CO2 through respiration and decomposition of organic matter. Considering all the pools and fluxes of C within ecosystems, C-cycling belowground is increasingly being recognized as one of the most significant co...
متن کاملIntensive management modifies soil CO2 efflux in 6-year-old Pinus taeda L. stands
Intensive forestry may reduce net CO2 emission into atmosphere by storing carbon in living biomass, dead organic matter and soil, and durable wood products. Because quantification of belowground carbon dynamics is important for reliable estimation of the carbon sequestered by intensively managed plantations, we examined soil CO2 efflux (SCO2 ) in a 6-year-old loblolly pine (Pinus taeda L.) plan...
متن کامل