Accelerometer-based method for correcting signal baseline changes caused by motion artifacts in medical near-infrared spectroscopy.

نویسندگان

  • Jaakko Virtanen
  • Tommi Noponen
  • Kalle Kotilahti
  • Juha Virtanen
  • Risto J Ilmoniemi
چکیده

In medical near-infrared spectroscopy (NIRS), movements of the subject often cause large step changes in the baselines of the measured light attenuation signals. This prevents comparison of hemoglobin concentration levels before and after movement. We present an accelerometer-based motion artifact removal (ABAMAR) algorithm for correcting such baseline motion artifacts (BMAs). ABAMAR can be easily adapted to various long-term monitoring applications of NIRS. We applied ABAMAR to NIRS data collected in 23 all-night sleep measurements and containing BMAs from involuntary movements during sleep. For reference, three NIRS researchers independently identified BMAs from the data. To determine whether the use of an accelerometer improves BMA detection accuracy, we compared ABAMAR to motion detection based on peaks in the moving standard deviation (SD) of NIRS data. The number of BMAs identified by ABAMAR was similar to the number detected by the humans, and 79% of the artifacts identified by ABAMAR were confirmed by at least two humans. While the moving SD of NIRS data could also be used for motion detection, on average 2 out of the 10 largest SD peaks in NIRS data each night occurred without the presence of movement. Thus, using an accelerometer improves BMA detection accuracy in NIRS.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic baseline correction by wavelet transform for quantitative open-path Fourier transform infrared spectroscopy.

A technique for automatically correcting the baseline of open-path Fourier transform infrared spectra is described in which the spectra are decomposed into high-frequency (details) and low-frequency (discrete approximations) information using a wavelet transform. After an appropriate number of iterations, n, the discrete approximation simulates the baseline of the spectrum. By setting the nth a...

متن کامل

Motion artifacts in functional near-infrared spectroscopy: A comparison of motion correction techniques applied to real cognitive data

Motion artifacts are a significant source of noise in many functional near-infrared spectroscopy (fNIRS) experiments. Despite this, there is no well-established method for their removal. Instead, functional trials of fNIRS data containing a motion artifact are often rejected completely. However, in most experimental circumstances the number of trials is limited, and multiple motion artifacts ar...

متن کامل

A Systematic Comparison of Motion Artifact Correction Techniques for Functional Near-Infrared Spectroscopy

Near-infrared spectroscopy (NIRS) is susceptible to signal artifacts caused by relative motion between NIRS optical fibers and the scalp. These artifacts can be very damaging to the utility of functional NIRS, particularly in challenging subject groups where motion can be unavoidable. A number of approaches to the removal of motion artifacts from NIRS data have been suggested. In this paper we ...

متن کامل

Reducing motion artifacts for long-term clinical NIRS monitoring using collodion-fixed prism-based optical fibers

As the applications of near-infrared spectroscopy (NIRS) continue to broaden and long-term clinical monitoring becomes more common, minimizing signal artifacts due to patient movement becomes more pressing. This is particularly true in applications where clinically and physiologically interesting events are intrinsically linked to patient movement, as is the case in the study of epileptic seizu...

متن کامل

A New Approach for Automatic Removal of Movement Artifacts in Near-Infrared Spectroscopy Time Series by Means of Acceleration Data

Near-infrared spectroscopy (NIRS) enables the non-invasive measurement of changes in hemodynamics and oxygenation in tissue. Changes in light-coupling due to movement of the subject can cause movement artifacts (MAs) in the recorded signals. Several methods have been developed so far that facilitate the detection and reduction of MAs in the data. However, due to fixed parameter values (e.g., gl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomedical optics

دوره 16 8  شماره 

صفحات  -

تاریخ انتشار 2011