Networks of piecewise linear neural mass models
نویسندگان
چکیده
Neural mass models are ubiquitous in large scale brain modelling. At the node level they are written in terms of a set of ODEs with a nonlinearity that is typically a sigmoidal shape. Using structural data from brain atlases they may be connected into a network to investigate the emergence of functional dynamic states, such as synchrony. With the simple restriction of the classic sigmoidal nonlinearity to a piecewise linear caricature we show that the famous Wilson-Cowan neural mass model can be analysed at both the node and network level. The construction of periodic orbits at the node level is achieved by patching together matrix exponential solutions, and stability is determined using Floquet theory. For networks with interactions described by circulant matrices, we show that the stability of the synchronous state can be determined in terms of a low-dimensional Floquet problem parameterised by the eigenvalues of the interaction matrix. This network Floquet problem is readily solved using linear algebra, to predict the onset of spatio-temporal network patterns arising from a synchronous instability. We consider the case of a discontinuous choice for the node nonlinearity, namely the replacement of the sigmoid by a Heaviside nonlinearity. This gives rise to a continuous-time switching network. At the node level this allows for the existence of unstable sliding periodic orbits, which we construct. The stability of a periodic orbit is now treated with a modification of Floquet theory to treat the evolution of small perturbations through switching manifolds via saltation matrices. At the network level the stability analysis of the synchronous state is considerably more challenging. Here we report on the use of ideas originally developed for the study of Glass networks to treat the stability of periodic network states in neural mass models with discontinuous interactions.
منابع مشابه
The relationship between Neural Networks and DEA-R (Case Study: Companies Stock Exchange)
Evaluate the performance of companies on the Stock Exchange using non-parametric methods is very important. DEA and DEA-R with the strategies for piecewise linear frontier production function and use of available data, assess the stock company. In this study, using a neural network algorithm DEA and DEA-R is suggested to classify the first companies in the stock exchange; Secondly, using the...
متن کاملEngineering Application Of Correlation on Ann Estimated Mass
A functional relationship between two variables, applied mass to a weighing platform and estimated mass using Multi-Layer Perceptron Artificial Neural Networks is approximated by a linear function. Linear relationships and correlation rates are obtained which quantitatively verify that the Artificial Neural Network model is functioning satisfactorily. Estimated mass is achieved through recallin...
متن کاملAN EXTENDED FUZZY ARTIFICIAL NEURAL NETWORKS MODEL FOR TIME SERIES FORECASTING
Improving time series forecastingaccuracy is an important yet often difficult task.Both theoretical and empirical findings haveindicated that integration of several models is an effectiveway to improve predictive performance, especiallywhen the models in combination are quite different. In this paper,a model of the hybrid artificial neural networks andfuzzy model is proposed for time series for...
متن کاملNonlinear Dynamics and Symbolic Dynamics of Neural Networks
A piecewise linear equation is proposed as a method of analysis of mathematical models of neural networks. A symbolic representation of the dynamics in this equation is given as a directed graph on an N-dimensional hypercube. This provides a formal link with discrete neural networks such as the original Hopfield models. Analytic criteria are given to establish steady states and limit cycle osci...
متن کاملPiecewise-Linear Modeling of Analog Circuits using Trained Feed-Forward Neural Networks and Adaptive Clustering of Hidden Neurons
This paper presents a new technique for automatically creating analog circuit models. The method extracts piecewise linear models from trained neural networks. A model is a set of linear dependencies between circuit performances and design parameters. The paper illustrates the technique for an OTA circuit an amplifier circuit widely used in filters and A/D converters for which models for gain a...
متن کاملDaily Pan Evaporation Estimation Using Artificial Neural Network-based Models
Accurate estimation of evaporation is important for design, planning and operation of water systems. In arid zones where water resources are scarce, the estimation of this loss becomes more interesting in the planning and management of irrigation practices. This paper investigates the ability of artificial neural networks (ANNs) technique to improve the accuracy of daily evaporation estimation....
متن کامل