Role of domain walls in the abnormal photovoltaic effect in BiFeO3

نویسندگان

  • Akash Bhatnagar
  • Ayan Roy Chaudhuri
  • Young Heon Kim
  • Dietrich Hesse
  • Marin Alexe
چکیده

Recently, the anomalous photovoltaic (PV) effect in BiFeO3 (BFO) thin films, which resulted in open circuit voltages (Voc) considerably larger than the band gap of the material, has generated a revival of the entire field of photoferroelectrics. Here, via temperature-dependent PV studies, we prove that the bulk photovoltaic (BPV) effect, which has been studied in the past for many non-centrosymmetric materials, is at the origin of the anomalous PV effect in BFO films. Moreover, we show that irrespective of the measurement geometry, Voc as high as 50V can be achieved by controlling the conductivity of domain walls (DW). We also show that photoconductivity of the DW is markedly higher than in the bulk of BFO. DOI: 10.1038/ncomms3835 OPEN

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Influence of Conductive Nanodomain Walls on the Photovoltaic Effect of BiFeO3 Thin Films

Two Planar Pt electrodes with an inter-electrode distance of about 100 nm were fabricated at the surface of BiFeO3 thin films, which allow the manipulation of ferroelectric domain switching at nanoscale. This electrode configuration was pursued to study conductive domain-wall influence on the photovoltaic current in BiFeO3 thin films. Modulations of short-circuit photovoltaic current and hyster...

متن کامل

Enhancement of Local Photovoltaic Current at Ferroelectric Domain Walls in BiFeO3

Domain walls, which are intrinsically two dimensional nano-objects exhibiting nontrivial electronic and magnetic behaviours, have been proven to play a crucial role in photovoltaic properties of ferroelectrics. Despite this recognition, the electronic properties of domain walls under illumination until now have been accessible only to macroscopic studies and their effects upon the conduction of...

متن کامل

Local mapping of generation and recombination lifetime in BiFeO3 single crystals by scanning probe photoinduced transient spectroscopy.

Carrier lifetime in photoelectric processes is the average time an excited carrier is free before recombining or trapping. Lifetime is directly related to defects and it is a key parameter in analyzing photovoltaic effects in semiconductors. We show here a scanning probe method combined with photoinduced current spectroscopy that allows mapping with nanoscale resolution of the generation and re...

متن کامل

Interface Engineering of Domain Structures in BiFeO3 Thin Films.

A wealth of fascinating phenomena have been discovered at the BiFeO3 domain walls, examples such as domain wall conductivity, photovoltaic effects, and magnetoelectric coupling. Thus, the ability to precisely control the domain structures and accurately study their switching behaviors is critical to realize the next generation of novel devices based on domain wall functionalities. In this work,...

متن کامل

Tunable Schottky Barrier in Photovoltaic BiFeO3 Based Ferroelectric Composite Thin Films

We examine the photo-assisted polarization loop in a BiFeO3 thin film under UV light illumination. BiFeO3 thin film prepared by pulsed laser deposition method onto the BaTiO3 thin film and the polarization behavior has been measured under poling voltage. Our results show the engineered polarization due to controllable schottky barrier under inverse poling voltage. This control on schottky barri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2013