Denoising Adversarial Autoencoders: Classifying Skin Lesions Using Limited Labelled Training Data

نویسندگان

  • Antonia Creswell
  • Alison Pouplin
  • Anil A. Bharath
چکیده

We propose a novel deep learning model for classifying medical images in the setting where there is a large amount of unlabelled medical data available, but labelled data is in limited supply. We consider the specific case of classifying skin lesions as either malignant or benign. In this setting, the proposed approach – the semi-supervised, denoising adversarial autoencoder – is able to utilise vast amounts of unlabelled data to learn a representation for skin lesions, and small amounts of labelled data to assign class labels based on the learned representation. We analyse the contributions of both the adversarial and denoising components of the model and find that the combination yields superior classification performance in the setting of limited labelled training data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Denoising Adversarial Autoencoders

Unsupervised learning is of growing interest because it unlocks the potential held in vast amounts of unlabelled data to learn useful representations for inference. Autoencoders, a form of generative model, may be trained by learning to reconstruct unlabelled input data from a latent representation space. More robust representations may be produced by an autoencoder if it learns to recover clea...

متن کامل

Semi-supervised Learning using Denoising Autoencoders for Brain Lesion Detection and Segmentation

The work explores the use of denoising autoencoders (DAEs) for brain lesion detection, segmentation, and false-positive reduction. Stacked denoising autoencoders (SDAEs) were pretrained using a large number of unlabeled patient volumes and fine-tuned with patches drawn from a limited number of patients ([Formula: see text], 40, 65). The results show negligible loss in performance even when SDAE...

متن کامل

Denoising Autoencoders for Overgeneralization in Neural Networks

Despite the recent developments that allowed neural networks to achieve impressive performance on a variety of applications, these models are intrinsically affected by the problem of overgeneralization, due to their partitioning of the full input space into the fixed set of target classes used during training. Thus it is possible for novel inputs belonging to categories unknown during training ...

متن کامل

Towards Deep Neural Network Architectures Robust to Adversarial Examples

Recent work has shown deep neural networks (DNNs) to be highly susceptible to well-designed, small perturbations at the input layer, or so-called adversarial examples. Taking images as an example, such distortions are often imperceptible, but can result in 100% mis-classification for a state of the art DNN. We study the structure of adversarial examples and explore network topology, pre-process...

متن کامل

Adversarial Variational Bayes: Unifying Variational Autoencoders and Generative Adversarial Networks

Variational Autoencoders (VAEs) are expressive latent variable models that can be used to learn complex probability distributions from training data. However, the quality of the resulting model crucially relies on the expressiveness of the inference model. We introduce Adversarial Variational Bayes (AVB), a technique for training Variational Autoencoders with arbitrarily expressive inference mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1801.00693  شماره 

صفحات  -

تاریخ انتشار 2018