Lung development and susceptibility to ventilator-induced lung injury.
نویسندگان
چکیده
RATIONALE Ventilator-induced lung injury has been predominantly studied in adults. OBJECTIVES To explore the effects of age and lung development on susceptibility to such injury. METHODS Ex vivo isolated nonperfused rat lungs (infant, juvenile, and adult) were mechanically ventilated where VT was based on milliliters per kilogram of body weight or as a percentage of the measured total lung capacity (TLC). In vivo anesthetized rats (infant, adult) were mechanically ventilated with pressure-limited VTs. Allocation to ventilation strategy was randomized. MEASUREMENTS Ex vivo injury was assessed by pressure-volume analysis, reduction in TLC, and histology, and in vivo injury by lung compliance, cytokine production, and wet- to dry-weight ratio. MAIN RESULTS Ex vivo ventilation (VT 30 ml.kg(-1)) resulted in a significant reduction (36.0 +/- 10.1%, p < 0.05) in TLC in adult but not in infant lungs. Ex vivo ventilation (VT 50% TLC) resulted in a significant reduction in TLC in both adult (27.8 +/- 2.8%) and infant (10.6 +/- 7.0%) lungs, but more so in the adult lungs (p < 0.05); these changes were paralleled by histology and pressure-volume characteristics. After high stretch in vivo ventilation, adult but not infant rats developed lung injury (total lung compliance, wet/dry ratio, tumor necrosis factor alpha). Surface video microscopy demonstrated greater heterogeneity of alveolar distension in ex vivo adult versus infant lungs. CONCLUSION These data provide ex vivo and in vivo evidence that comparable ventilator settings are significantly more injurious in the adult than infant rat lung, probably reflecting differences in intrinsic susceptibility or inflation pattern.
منابع مشابه
Vascular remodeling protects against ventilator-induced lung injury in the in vivo rat.
BACKGROUND The role of the pulmonary vasculature in the pathogenesis of ventilator-induced lung injury is not well established. In this study, the authors investigated the effect of vascular remodeling due to chronic pulmonary hypertension on susceptibility to ventilator-induced lung injury. The authors hypothesized that the enhanced vascular tensile strength associated with pulmonary vascular ...
متن کاملIschemia and reperfusion increases susceptibility to ventilator-induced lung injury in rats.
OBJECTIVES Hemorrhagic shock followed by resuscitation (HSR) commonly triggers an inflammatory response that leads to acute respiratory distress syndrome. HYPOTHESIS HSR exacerbates mechanical stress-induced lung injury by rendering the lung more susceptible to ventilator-induced lung injury. METHODS Rats were subjected to HSR, and were randomized into an HSR + high tidal volume and zero po...
متن کاملMitogen-Activated Protein Kinases Regulate Susceptibility to Ventilator-Induced Lung Injury
BACKGROUND Mechanical ventilation causes ventilator-induced lung injury in animals and humans. Mitogen-activated protein kinases have been implicated in ventilator-induced lung injury though their functional significance remains incomplete. We characterize the role of p38 mitogen-activated protein kinase/mitogen activated protein kinase kinase-3 and c-Jun-NH(2)-terminal kinase-1 in ventilator-i...
متن کاملIncreased susceptibility to ventilator-associated lung injury persists after clinical recovery from experimental endotoxemia.
BACKGROUND Endotoxin, when delivered shortly before or during mechanical ventilation, increases susceptibility to ventilation-associated lung injury. However, it is unclear whether increased susceptibility to ventilator-associated lung injury is still present after clinical recovery from a transient endotoxin challenge. METHODS Anesthetized rats were submitted to a 4-h period of mechanical ve...
متن کاملThe role of high-frequency oscillatory ventilation in paediatric intensive care
Mechanical ventilation during acute respiratory failure in children is associated with development of ventilator-induced lung injury. Experimental models of mechanical ventilation that limit phasic changes in lung volumes and prevent alveolar overdistension appear to be less damaging to the lung. High-frequency oscillatory ventilation, using very small tidal volumes and relatively high end-expi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of respiratory and critical care medicine
دوره 171 7 شماره
صفحات -
تاریخ انتشار 2005