PET imaging of β-glucuronidase activity by an activity-based 124I-trapping probe for the personalized glucuronide prodrug targeted therapy.

نویسندگان

  • Yu-Cheng Su
  • Ta-Chun Cheng
  • Yu-Ling Leu
  • Steve R Roffler
  • Jaw-Yuan Wang
  • Chih-Hung Chuang
  • Chien-Han Kao
  • Kai-Chuan Chen
  • Hsin-Ell Wang
  • Tian-Lu Cheng
چکیده

Beta-glucuronidase (βG) is a potential biomarker for cancer diagnosis and prodrug therapy. The ability to image βG activity in patients would assist in personalized glucuronide prodrug cancer therapy. However, whole-body imaging of βG activity for medical usage is not yet available. Here, we developed a radioactive βG activity-based trapping probe for positron emission tomography (PET). We generated a (124)I-tyramine-conjugated difluoromethylphenol beta-glucuronide probe (TrapG) to form (124)I-TrapG that could be selectively activated by βG for subsequent attachment of (124)I-tyramine to nucleophilic moieties near βG-expressing sites. We estimated the specificity of a fluorescent FITC-TrapG, the cytotoxicity of tyramine-TrapG, and the serum half-life of (124)I-TrapG. βG targeting of (124)I-TrapG in vivo was examined by micro-PET. The biodistribution of (131)I-TrapG was investigated in different organs. Finally, we imaged the endogenous βG activity and assessed its correlation with therapeutic efficacy of 9-aminocamptothecin glucuronide (9ACG) prodrug in native tumors. FITC-TrapG showed specific trapping at βG-expressing CT26 (CT26/mβG) cells but not in CT26 cells. The native TrapG probe possessed low cytotoxicity. (124)I-TrapG preferentially accumulated in CT26/mβG but not CT26 cells. Meanwhile, micro-PET and whole-body autoradiography results demonstrated that (124)I-TrapG signals in CT26/mβG tumors were 141.4-fold greater than in CT26 tumors. Importantly, Colo205 xenografts in nude mice that express elevated endogenous βG can be monitored by using infrared glucuronide trapping probes (NIR-TrapG) and suppressed by 9ACG prodrug treatment. (124)I-TrapG exhibited low cytotoxicity allowing long-term monitoring of βG activity in vivo to aid in the optimization of prodrug targeted therapy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Small Molecule Therapeutics PET Imaging of b-Glucuronidase Activity by an Activity-Based I-Trapping Probe for the Personalized Glucuronide Prodrug Targeted Therapy

Beta-glucuronidase (bG) is a potential biomarker for cancer diagnosis and prodrug therapy. The ability to image bG activity in patients would assist in personalized glucuronide prodrug cancer therapy. However, whole-body imaging of bG activity for medical usage is not yet available. Here, we developed a radioactive bG activity–based trapping probe for positron emission tomography (PET). We gene...

متن کامل

Annexin-directed β-glucuronidase for the targeted treatment of solid tumors.

Enzyme prodrug therapy has the potential to remedy the lack of selectivity associated with the systemic administration of chemotherapy. However, most current systems are immunogenic and constrained to a monotherapeutic approach. We developed a new class of fusion proteins centered about the human enzyme β-glucuronidase (βG), capable of converting several innocuous prodrugs into chemotherapeutic...

متن کامل

Membrane-localized activation of glucuronide prodrugs by beta-glucuronidase enzymes.

Gene-mediated enzyme prodrug therapy (GDEPT) seeks to increase the therapeutic index of anti-neoplastic agents by promoting selective activation of relatively nontoxic drug derivatives at sites of specific enzyme expression. Glucuronide prodrugs are attractive for GDEPT due to their low toxicity, bystander effect in the interstitial tumor space and the large range of possible glucuronide drug t...

متن کامل

Antiangiogenesis targeting tumor microenvironment synergizes glucuronide prodrug antitumor activity.

PURPOSE This study is aimed at investigating the in vivo antitumor activity of a novel cell-impermeable glucuronide prodrug, 9-aminocamptothecin glucuronide (9ACG), and elucidating the synergistically antitumor effects of antiangiogenesis therapy by targeting the tumor microenvironment. EXPERIMENTAL DESIGN We analyzed the antitumor effects of 9ACG alone or combined with antiangiogenic monoclo...

متن کامل

In vivo positron emission tomography imaging of protease activity by generation of a hydrophobic product from a noninhibitory protease substrate.

PURPOSE To develop an imaging technology for protease activities in patients that could help in prognosis prediction and in design of personalized, protease-based inhibitors and prodrugs for targeted therapy. EXPERIMENTAL DESIGN Polyethylene glycol (PEG) was covalently attached to the N-terminus of a hydrophilic peptide substrate (GPLGVR) for matrix metalloproteinase (MMP) to increase hydroph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular cancer therapeutics

دوره 13 12  شماره 

صفحات  -

تاریخ انتشار 2014