A hybrid SARIMA and support vector machines in forecasting the production values of the machinery industry in Taiwan

نویسندگان

  • Kuan-Yu Chen
  • Cheng-Hua Wang
چکیده

This paper proposes a hybrid methodology that exploits the unique strength of the seasonal autoregressive integrated moving average (SARIMA) model and the support vector machines (SVM) model in forecasting seasonal time series. The seasonal time series data of Taiwan’s machinery industry production values were used to examine the forecasting accuracy of the proposed hybrid model. The forecasting performance was compared among three models, i.e., the hybrid model, SARIMA models and the SVM models, respectively. Among these methods, the normalized mean square error (NMSE) and the mean absolute percentage error (MAPE) of the hybrid model were the lowest. The hybrid model was also able to forecast certain significant turning points of the test time series. 2005 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of system decision support tools for behavioral trends monitoring of machinery maintenance in a competitive environment

The article is centred on software system development for manufacturing company that produces polyethylene bags using mostly conventional machines in a competitive world where each business enterprise desires to stand tall. This is meant to assist in gaining market shares, taking maintenance and production decisions by the dynamism and flexibilities embedded in the package as customers’ demand ...

متن کامل

Combining neural network model with seasonal time series ARIMA model

This paper proposes a hybrid forecasting model, which combines the seasonal time series ARIMA (SARIMA) and the neural network back propagation (BP) models, known as SARIMABP. This model was used to forecast two seasonal time series data of total production value for Taiwan machinery industry and the soft drink time series. The forecasting performance was compared among four models, i.e., the SA...

متن کامل

Application of Artificial Neural Networks and Support Vector Machines for carbonate pores size estimation from 3D seismic data

This paper proposes a method for the prediction of pore size values in hydrocarbon reservoirs using 3D seismic data. To this end, an actual carbonate oil field in the south-western part ofIranwas selected. Taking real geological conditions into account, different models of reservoir were constructed for a range of viable pore size values.  Seismic surveying was performed next on these models. F...

متن کامل

Forecasting Air Pollution Concentrations in Iran, Using a Hybrid Model

The present study aims at developing a forecasting model to predict the next year’s air pollution concentrations in the atmosphere of Iran. In this regard, it proposes the use of ARIMA, SVR, and TSVR, as well as hybrid ARIMA-SVR and ARIMA-TSVR models, which combined the autoregressive part of the autoregressive integrated moving average (ARIMA) model with the support vector regression technique...

متن کامل

A Comparative Study of Extreme Learning Machines and Support Vector Machines in Prediction of Sediment Transport in Open Channels

The limiting velocity in open channels to prevent long-term sedimentation is predicted in this paper using a powerful soft computing technique known as Extreme Learning Machines (ELM). The ELM is a single Layer Feed-forward Neural Network (SLFNN) with a high level of training speed. The dimensionless parameter of limiting velocity which is known as the densimetric Froude number (Fr) is predicte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 32  شماره 

صفحات  -

تاریخ انتشار 2007