GPU-Assisted High Quality Particle Rendering
نویسندگان
چکیده
Visualizing dynamic participating media in particle form by fully solving equations from the light transport theory is a computationally very expensive process. In this paper, we present a computational pipeline for particle volume rendering that is easily accelerated by the current GPU. To fully harness its massively parallel computing power, we transform input particles into a volumetric density field using a GPU-assisted, adaptive density estimation technique that iteratively adapts the smoothing length for local grid cells. Then, the volume data is visualized efficiently based on the volume photon mapping method where our GPU techniques further improve the rendering quality offered by previous implementations while performing rendering computation in acceptable time. It is demonstrated that high quality volume renderings can be easily produced from large particle datasets in time frames of a few seconds to less than a minute.
منابع مشابه
Particle Splatting: Interactive Rendering of Particle-Based Simulation Data
Particle-based simulation methods are gaining popularity for creating animations of physical phenomena such as fluids and melting solids. Extracting and visualizing an explicit surface corresponding to the volume of particles is however a difficult and time-consuming task, especially with increasing particle set sizes. In this paper, we present a novel interactive rendering algorithm for raster...
متن کاملMassively parallel inverse rendering using Multi-objective Particle Swarm Optimization
We present a novel GPU-accelerated per-pixel inverse rendering optimization algorithm based on Particle Swarm Optimization (PSO). Our algorithm estimates the per-pixel scene attributes—including reflectance properties—of a 3D model, and is fast enough to do in situ visualization of the optimization in real-time. The algorithm’s high parallel efficiency is demonstrated through our GPU/GLSL shade...
متن کاملParticle-Based Fluid Simulation on GPU
Rendering realistic moving water is one of the key techniques that immerse the viewers into interactive graphics world including computer games. Physical simulations based on computational fluid dynamics (CFD) is useful for rendering the realistic behaviour of water. However, real-time fluid rendering has been one of the challenging tasks because of high computational cost of CFD. According to ...
متن کاملGPU-Assisted Raycasting for Cosmological Adaptive Mesh Refinement Simulations
In the recent years the advent of powerful graphics hardware with flexible, programmable fragment shaders enabled interactive raycasting implementations which perform the ray-integration on a per-pixel basis. Unlike slicebased volume rendering these approaches do not suffer from rendering artifacts caused by varying sample distances along different ray-directions or limited frame-buffer precisi...
متن کاملParticle-based Rendering for Porous Media
Particle-based modeling and simulation of granular or porous media is a widely-used tool in physics and material science to study behavior like fracture and failure under external force. Classical models use spherical particles. However, up to 108 polyhedral-shaped particles are required to achieve realistic results comparable to laboratory experiments. As contact points and exposed surfaces pl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Comput. Graph. Forum
دوره 28 شماره
صفحات -
تاریخ انتشار 2009