Counting and size classification of active soil bacteria by fluorescence in situ hybridization with an rRNA oligonucleotide probe.

نویسندگان

  • H Christensen
  • M Hansen
  • J Sorensen
چکیده

A fluorescence in situ hybridization (FISH) technique based on binding of a rhodamine-labelled oligonucleotide probe to 16S rRNA was used to estimate the numbers of ribosome-rich bacteria in soil samples. Such bacteria, which have high cellular rRNA contents, were assumed to be active (and growing) in the soil. Hybridization to an rRNA probe, EUB338, for the domain Bacteria was performed with a soil slurry, and this was followed by collection of the bacteria by membrane filtration (pore size, 0.2 micrometer). A nonsense probe, NONEUB338 (which has a nucleotide sequence complementary to the nucleotide sequence of probe EUB338), was used as a control for nonspecific staining. Counting and size classification into groups of small, medium, and large bacteria were performed by fluorescence microscopy. To compensate for a difference in the relative staining intensities of the probes and for binding by the rhodamine part of the probe, control experiments in which excess unlabelled probe was added were performed. This resulted in lower counts with EUB338 but not with NONEUB338, indicating that nonspecific staining was due to binding of rhodamine to the bacteria. A value of 4.8 x 10(8) active bacteria per g of dry soil was obtained for bulk soil incubated for 2 days with 0.3% glucose. In comparison, a value of 3.8 x 10(8) active bacteria per g of dry soil was obtained for soil which had been air dried and subsequently rewetted. In both soils, the majority (68 to 77%) of actively growing bacteria were members of the smallest size class (cell width, 0.25 to 0.5 micrometer), but the active (and growing) bacteria still represented only approximately 5% of the total bacterial population determined by DAPI (4', 6-diamidino-2-phenylindole) staining. The FISH technique in which slurry hybridization is used holds great promise for use with phylogenetic probes and for automatic counting of soil bacteria.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In Situ Localization of Azospirillum brasilense in the Rhizosphere of Wheat with Fluorescently Labeled, rRNA-Targeted Oligonucleotide Probes and Scanning Confocal Laser Microscopy.

The colonization of wheat roots by Azospirillum brasilense was used as a model system to evaluate the utility of whole-cell hybridization with fluorescently labeled, rRNA-targeted oligonucleotide probes for the in situ monitoring of rhizosphere microbial communities. Root samples of agar- or soil-grown 10- and 30-day-old wheat seedlings inoculated with different strains of A. brasilense were hy...

متن کامل

Development of an Alu-PCR Amplified YAC Probe Suitable for Enumeration of Chromosome 13 on Uncultured Lymphocytes and Amniocytes by Fluorescence in situ Hybridization

The main objective of the present study was to develop an efficient and reliable probe to be routinely used for detection of chromosome 13 copy numbers by interphase FISH. To achieve this, a Yeast Artificial Chromosome (YAC) containing sequences specific for human 13q12 (744D11), was cultured and the whole yeast genomic DNA was extracted. The human insert within the isolated DNA was amplified b...

متن کامل

Automated image analysis for quantitative fluorescence in situ hybridization with environmental samples.

When fluorescence in situ hybridization (FISH) analyses are performed with complex environmental samples, difficulties related to the presence of microbial cell aggregates and nonuniform background fluorescence are often encountered. The objective of this study was to develop a robust and automated quantitative FISH method for complex environmental samples, such as manure and soil. The method a...

متن کامل

Design and performance of a 16S rRNA-targeted oligonucleotide probe for detection of members of the genus Bdellovibrio by fluorescence in situ hybridization.

A 16S rRNA-targeted, Cy3-labeled oligonucleotide probe was designed to detect members of the genus Bdellovibrio by fluorescence in situ hybridization. Specific hybridization conditions were established; however, the detection of bdellovibrios in environmental samples required enrichment, confirming that Bdellovibrio spp. are not present in large numbers in the environment.

متن کامل

دورگه‌سازی در محل؛ اصول و کاربردها : مقاله مروری

In situ hybridization (ISH) is a method that uses labeled complementary single strand DNA or RNA to localize specific DNA or RNA sequences in an intact cell or in a fixed tissue section. The main steps of ISH consist of: probe selection, tissue or sample preparation, pre-hybridization treatment, hybridization and washing, detection and control procedure. Probe selection is one of the important ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 65 4  شماره 

صفحات  -

تاریخ انتشار 1999