Accelerated Runge-Kutta Methods

نویسندگان

  • Firdaus E. Udwadia
  • Artin Farahani
  • Leonid Berezansky
چکیده

Standard Runge-Kutta methods are explicit, one-step, and generally constant step-size numerical integrators for the solution of initial value problems. Such integration schemes of orders 3, 4, and 5 require 3, 4, and 6 function evaluations per time step of integration, respectively. In this paper, we propose a set of simple, explicit, and constant step-size Accerelated-Runge-Kutta methods that are two-step in nature. For orders 3, 4, and 5, they require only 2, 3, and 5 function evaluations per time step, respectively. Therefore, they are more computationally efficient at achieving the same order of local accuracy. We present here the derivation and optimization of these accelerated integration methods. We include the proof of convergence and stability under certain conditions as well as stability regions for finite step sizes. Several numerical examples are provided to illustrate the accuracy, stability, and efficiency of the proposed methods in comparison with standard RungeKutta methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Acceleration of Runge-kutta Integration Schemes

A simple accelerated third-order Runge-Kutta-type, fixed time step, integration scheme that uses just two function evaluations per step is developed. Because of the lower number of function evaluations, the scheme proposed herein has a lower computational cost than the standard third-order Runge-Kutta scheme while maintaining the same order of local accuracy. Numerical examples illustrating the...

متن کامل

UCLA COMPUTATIONAL AND APPLIED MATHEMATICS Accelerated Solutions of Nonlinear Equations Using Stabilized Runge-Kutta Methods

In this paper we discuss the use of stabilized Runge-Kutta methods to accelerate the solution of systems of nonlinear equations. The general idea is to seek solutions as steady state solutions of an associated system of ordinary differential equations. A class of stabilized RungeKutta methods are derived that can be used to efficiently evolve the associated system to steady state. Computational...

متن کامل

AIAA 1981–1259 Numerical Solution of the Euler Equations by Finite Volume Methods Using Runge-Kutta Time-Stepping Schemes

A new combination of a finite volume discretization in conjunction with carefully designed dissipative terms of third order, and a Runge Kutta time stepping scheme, is shown to yield an effective method for solving the Euler equations in arbitrary geometric domains. The method has been used to determine the steady transonic flow past an airfoil using an O mesh. Convergence to a steady state is ...

متن کامل

Fast Iterative Methods for Navier-Stokes Equations with SST Turbulence Model and Chemistry

The steady state compressible Navier-Stokes equations are solved with an explicit Runge-Kutta scheme accelerated by multigrid and an implicit preconditioner. Extensions are made to include a k-ω/SST turbulence model and chemical reactions. The implicit smoother enables the use of high CFL numbers yielding fast convergence. We present applications to turbulent solutions for flows about wings and...

متن کامل

Accuracy of classical conservation laws for Hamiltonian PDEs under Runge-Kutta discretizations

We investigate conservative properties of Runge-Kutta methods for Hamiltonian PDEs. It is shown that multi-symplecitic Runge-Kutta methods preserve precisely norm square conservation law. Based on the study of accuracy of Runge-Kutta methods applied to ordinary and partial differential equations, we present some results on the numerical accuracy of conservation laws of energy and momentum for H...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008