Identification of Genes Required for Secretion of the Francisella Oxidative Burst-Inhibiting Acid Phosphatase AcpA
نویسندگان
چکیده
Francisella tularensis is a Tier 1 bioterror threat and the intracellular pathogen responsible for tularemia in humans and animals. Upon entry into the host, Francisella uses multiple mechanisms to evade killing. Our previous studies have shown that after entering its primary cellular host, the macrophage, Francisella immediately suppresses the oxidative burst by secreting a series of acid phosphatases including AcpA-B-C and HapA, thereby evading the innate immune response of the macrophage and enhancing survival and further infection. However, the mechanism of acid phosphatase secretion by Francisella is still unknown. In this study, we screened for genes required for AcpA secretion in Francisella. We initially demonstrated that the known secretion systems, the putative Francisella-pathogenicity island (FPI)-encoded Type VI secretion system and the Type IV pili, do not secrete AcpA. Using random transposon mutagenesis in conjunction with ELISA, Western blotting and acid phosphatase enzymatic assays, a transposon library of 5450 mutants was screened for strains with a minimum 1.5-fold decrease in secreted (culture supernatant) AcpA, but no defect in cytosolic AcpA. Three mutants with decreased supernatant AcpA were identified. The transposon insertion sites of these mutants were revealed by direct genomic sequencing or inverse-PCR and sequencing. One of these mutants has a severe defect in AcpA secretion (at least 85% decrease) and is a predicted hypothetical inner membrane protein. Interestingly, this mutant also affected the secretion of the FPI-encoded protein, VgrG. Thus, this screen identified novel protein secretion factors involved in the subversion of host defenses.
منابع مشابه
Structure of Francisella tularensis AcpA: prototype of a unique superfamily of acid phosphatases and phospholipases C.
AcpA is a respiratory burst-inhibiting acid phosphatase from the Centers for Disease Control and Prevention Category A bioterrorism agent Francisella tularensis and prototype of a superfamily of acid phosphatases and phospholipases C. We report the 1.75-A resolution crystal structure of AcpA complexed with the inhibitor orthovanadate, which is the first structure of any F. tularensis protein an...
متن کاملAcpA is a Francisella acid phosphatase that affects intramacrophage survival and virulence.
AcpA of Francisella spp. is a respiratory-burst-inhibiting acid phosphatase that also exhibits phospholipase C activity. To better understand the molecular basis of AcpA in virulence, a deletion of acpA was constructed in Francisella novicida. The phosphatase and lipase activities were reduced 10-fold and 8-fold, respectively, in the acpA mutant compared to the wild type and were found mostly a...
متن کاملCrystallization of AcpA, a respiratory burst-inhibiting acid phosphatase from Francisella tularensis.
Francisella tularensis is a highly infectious bacterial pathogen that is classified as a Category A Pathogen by the Centers for Disease Control and Prevention. Here, we report crystallization of a recombinant form of F. tularensis AcpA, a unique and highly expressed acid phosphatase that is thought to play a role in intracellular survival by inhibiting the host respiratory burst. Three crystal ...
متن کاملAcid phosphatases do not contribute to the pathogenesis of type A Francisella tularensis.
The intracellular pathogen Francisella tularensis is the causative agent of tularemia, a zoonosis that can affect humans with potentially lethal consequences. Essential to Francisella virulence is its ability to survive and proliferate within phagocytes through phagosomal escape and cytosolic replication. Francisella spp. encode a variety of acid phosphatases, whose roles in phagosomal escape a...
متن کاملCombined deletion of four Francisella novicida acid phosphatases attenuates virulence and macrophage vacuolar escape.
Francisella tularensis is a facultative intracellular pathogen and the etiologic agent of tularemia. It is capable of escape from macrophage phagosomes and replicates in the host cell cytosol. Bacterial acid phosphatases are thought to play a major role in the virulence and intracellular survival of a number of intracellular pathogens. The goal of this study was to delete the four primary acid ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Frontiers in microbiology
دوره 7 شماره
صفحات -
تاریخ انتشار 2016