Online Temporal Clustering for Outbreak Detection
نویسندگان
چکیده
BACKGROUND We hypothesize that epidemics around their onset tend to affect primarily a well-defined subgroup of the overall population that is for some reason particularly susceptible. While the vulnerable cohort is often well described for many human diseases, this is not the case for instance when we wish to detect a novel computer virus. Clustering may be used to define the subgroups that will be tested for over-density of symptom occurrence [1]. The clustering slowly changes in response to changes in the population.
منابع مشابه
COD: Online Temporal Clustering for Outbreak Detection
We present Cluster Onset Detection (COD), a novel algorithm to aid in detection of epidemic outbreaks. COD employs unsupervised learning techniques in an online setting to partition the population into subgroups, thus increasing the ability to make a detection over the population as a whole by decreasing the signal-to-noise ratio. The method is adaptive and able to alter its clustering in real-...
متن کاملBotOnus: an online unsupervised method for Botnet detection
Botnets are recognized as one of the most dangerous threats to the Internet infrastructure. They are used for malicious activities such as launching distributed denial of service attacks, sending spam, and leaking personal information. Existing botnet detection methods produce a number of good ideas, but they are far from complete yet, since most of them cannot detect botnets in an early stage ...
متن کاملSpread of porcine circovirus associated disease (PCVAD) in Ontario (Canada) swine herds: Part I. Exploratory spatial analysis
BACKGROUND The systemic form of porcine circovirus associated disease (PCVAD), also known as postweaning multisystemic wasting syndrome (PMWS) was initially detected in the early 1990s. Starting in 2004, the Canadian swine industry experienced considerable losses due to PCVAD, concurrent with a shift in genotype of porcine circovirus type 2 (PCV2). Objectives of the current study were to explor...
متن کاملin silico Surveillance: evaluating outbreak detection with simulation models
BACKGROUND Detecting outbreaks is a crucial task for public health officials, yet gaps remain in the systematic evaluation of outbreak detection protocols. The authors' objectives were to design, implement, and test a flexible methodology for generating detailed synthetic surveillance data that provides realistic geographical and temporal clustering of cases and use to evaluate outbreak detecti...
متن کاملA Bayesian spatio-temporal method for disease outbreak detection
A system that monitors a region for a disease outbreak is called a disease outbreak surveillance system. A spatial surveillance system searches for patterns of disease outbreak in spatial subregions of the monitored region. A temporal surveillance system looks for emerging patterns of outbreak disease by analyzing how patterns have changed during recent periods of time. If a non-spatial, non-te...
متن کامل