Impaired 17,20-Lyase Activity in Male Mice Lacking Cytochrome b5 in Leydig Cells
نویسندگان
چکیده
Androgen and estrogen biosynthesis in mammals requires the 17,20-lyase activity of cytochrome P450 17A1 (steroid 17-hydroxylase/17,20-lyase). Maximal 17,20-lyase activity in vitro requires the presence of cytochrome b5 (b5), and rare cases of b5 deficiency in human beings causes isolated 17,20-lyase deficiency. To study the consequences of conditional b5 removal from testicular Leydig cells in an animal model, we generated Cyb5(flox/flox):Sf1-Cre (LeyKO) mice. The LeyKO male mice had normal body weights, testis and sex organ weights, and fertility compared with littermates. Basal serum and urine steroid profiles of LeyKO males were not significantly different than littermates. In contrast, marked 17-hydroxyprogesterone accumulation (100-fold basal) and reduced testosterone synthesis (27% of littermates) were observed after human chorionic gonadotropin stimulation in LeyKO animals. Testis homogenates from LeyKO mice showed reduced 17,20-lyase activity and a 3-fold increased 17-hydroxylase to 17,20-lyase activity ratio, which were restored to normal upon addition of recombinant b5. We conclude that Leydig cell b5 is required for maximal androgen synthesis and to prevent 17-hydroxyprogesterone accumulation in the mouse testis; however, the b5-independent 17,20-lyase activity of mouse steroid 17-hydroxylase/17,20-lyase is sufficient for normal male genital development and fertility. LeyKO male mice are a good model for the biochemistry but not the physiology of isolated 17,20-lyase deficiency in human beings.
منابع مشابه
Xenopus laevis CYP17 Regulates Androgen Biosynthesis Independent of the Cofactor Cytochrome
The enzyme CYP17 primarily regulates androgen production by mediating four reactions: conversion of pregnenolone and progesterone to 17-hydroxypregnenolone and 17-hydroxyprogesterone, respectively (17 -hydroxylase activity), followed by conversion of the 17-hydroxylated steroids to dehydroepiandrosterone and androstenedione, respectively (17,20-lyase activity). Most mammalian CYP17 isoforms hav...
متن کاملA Missense Mutation in the Human Cytochrome b5 Gene causes 46,XY Disorder of Sex Development due to True Isolated 17,20 Lyase Deficiency
CONTEXT Isolated 17,20 lyase deficiency is commonly defined by apparently normal 17α-hydroxylase activity but severely reduced 17,20 lyase activity of the bifunctional enzyme cytochrome P450 (CYP) enzyme 17A1 (CYP17A1), resulting in sex steroid deficiency but normal glucocorticoid and mineralocorticoid reserve. Cytochrome b5 (CYB5A) is thought to selectively enhance 17,20 lyase activity by faci...
متن کاملBiochemical assessment of limits to estrogen synthesis in porcine follicles.
Limits to estrogen production by early and late preovulatory porcine follicles were assessed by comparing enzymatic capacities for androgen (17,20-lyase) and estrogen (aromatase) synthesis in theca interna and granulosa, support of enzyme activities by the redox partner proteins NADPH-cytochrome P450 oxidoreductase (reductase) and cytochrome b5, and tissue-specific expression and regulation of ...
متن کاملCytochrome P450 17alpha hydroxylase/17,20 lyase (CYP17) function in cholesterol biosynthesis: identification of squalene monooxygenase (epoxidase) activity associated with CYP17 in Leydig cells.
Cytochrome P450 17alpha-hydroxylase/17,20-lyase (CYP17) is a microsomal enzyme catalyzing two distinct activities, 17alpha-hydroxylase and 17,20-lyase, essential for the biosynthesis of adrenal and gonadal steroids. CYP17 is a potent oxidant, it is present in liver and nonsteroidogenic tissues, and it has been suggested to have catalytic properties distinct to its function in steroid metabolism...
متن کاملModulation of the activity of human 17 alpha-hydroxylase-17,20-lyase (CYP17) by cytochrome b5: endocrinological and mechanistic implications.
Using NADPH-cytochrome P-450 reductase as electron donor the homogeneous pig 17 alpha-hydroxylase-17,20-lyase (CYP17) was shown to catalyse the conversion of delta 5, as well as delta 4, steroids (pregnenolone and progesterone respectively) predominantly into the corresponding 17 alpha-hydroxylated products. The latter were then cleaved by the lyase (desmolase) activity of the enzyme into andro...
متن کامل