The Beta-Jacobi Matrix Model, the CS Decomposition, and Generalized Singular Value Problems

نویسندگان

  • Alan Edelman
  • Brian D. Sutton
چکیده

Abstract. We provide a solution to the β-Jacobi matrix model problem posed by Dumitriu and the first author. The random matrix distribution introduced here, called a matrix model, is related to the model of Killip and Nenciu, but the development is quite different. We start by introducing a new matrix decomposition and an algorithm for computing this decomposition. Then we run the algorithm on a Haar-distributed random matrix to produce the β-Jacobi matrix model. The Jacobi ensemble on R, parameterized by β > 0, a > −1, and b > −1, is the probability distribution whose density is proportional

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large-scale Inversion of Magnetic Data Using Golub-Kahan Bidiagonalization with Truncated Generalized Cross Validation for Regularization Parameter Estimation

In this paper a fast method for large-scale sparse inversion of magnetic data is considered. The L1-norm stabilizer is used to generate models with sharp and distinct interfaces. To deal with the non-linearity introduced by the L1-norm, a model-space iteratively reweighted least squares algorithm is used. The original model matrix is factorized using the Golub-Kahan bidiagonalization that proje...

متن کامل

Graph Clustering by Hierarchical Singular Value Decomposition with Selectable Range for Number of Clusters Members

Graphs have so many applications in real world problems. When we deal with huge volume of data, analyzing data is difficult or sometimes impossible. In big data problems, clustering data is a useful tool for data analysis. Singular value decomposition(SVD) is one of the best algorithms for clustering graph but we do not have any choice to select the number of clusters and the number of members ...

متن کامل

An Efficient Numerical Method for a Class of Boundary Value Problems, Based on Shifted Jacobi-Gauss Collocation Scheme

We present a numerical method for a class of boundary value problems on the unit interval which feature a type of exponential and product nonlinearities. Also, we consider singular case. We construct a kind of spectral collocation method based on shifted Jacobi polynomials to implement this method. A number of specific numerical examples demonstrate the accuracy and the efficiency of the propos...

متن کامل

روش‌های تجزیه مقادیر منفرد منقطع و تیخونوف تعمیم‌یافته در پایدارسازی مسئله انتقال به سمت پائین

The methods applied to regularization of the ill-posed problems can be classified under “direct” and “indirect” methods. Practice has shown that the effects of different regularization techniques on an ill-posed problem are not the same, and as such each ill-posed problem requires its own investigation in order to identify its most suitable regularization method. In the geoid computations witho...

متن کامل

A systolic algorithm for QSVD updating

In earlier reports, a Jacobi-type algorithm for SVD updating has been developed 8] and implemented on a systolic array 9]. Here, this is extended to a generalized decomposition for a matrix pair, viz. the quotient singular value decomposition (QSVD). Updating problems are considered where new rows are appended to either one or both of the matrices involved. Systolic arrays as well as square roo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Foundations of Computational Mathematics

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2008