nNOS gene deletion exacerbates pathological left ventricular remodeling and functional deterioration after myocardial infarction.
نویسندگان
چکیده
BACKGROUND The neuronal isoform of nitric oxide synthase (nNOS) has been implicated in the regulation of basal and beta-adrenergic inotropy in normal and chronically infarcted hearts. Furthermore, myocardial nNOS expression and activity increase in failing hearts, raising the possibility that nNOS may influence left ventricular (LV) remodeling progression and functional deterioration after myocardial infarction (MI). METHODS AND RESULTS We compared LV remodeling at 1, 4, and 8 weeks after MI in nNOS-knockout mice (nNOS(-/-)) and their wild-type (WT) littermates matched for infarct size by using a highly accurate 3-dimensional echocardiographic technique. Basal LV hemodynamics and the inotropic response to dobutamine infusion (4 and 16 ng.g(-1).min(-1)) were also evaluated 8 weeks after MI. Sham-operated nNOS(-/-) mice showed enhanced basal LV contractility (P<0.03 versus WT, as evaluated by preload-recruitable stroke work) but an attenuated inotropic response to dobutamine infusion (P<0.01 versus WT). Both basal and beta-adrenergic LV relaxations were significantly impaired in nNOS(-/-) mice. Survival after MI did not differ between groups. However, nNOS(-/-) mice developed a faster and more severe LV dilation compared with WT mice (P<0.05 for both end-systolic and end-diastolic volume indices). WT mice maintained a positive inotropic response to dobutamine 8 weeks after MI. In contrast, infarcted nNOS(-/-) mice responded to dobutamine with a dramatic fall in LV contractility (P<0.01 for preload-recruitable stroke work). CONCLUSIONS nNOS plays a crucial role in preventing adverse LV remodeling and maintaining myocardial beta-adrenergic reserve after MI. Taken together, our findings suggest that upregulation of myocardial nNOS in infarcted hearts may be an important adaptive mechanism.
منابع مشابه
Transient receptor potential vanilloid gene deletion exacerbates inflammation and atypical cardiac remodeling after myocardial infarction.
The transient receptor potential vanilloid (TRPV1) channels expressed in sensory afferent fibers innervating the heart may be activated by protons or endovanilloids released during myocardial ischemia (MI), leading to angina. Although our previous in vitro data indicate that TRPV1 activation may preserve cardiac function after ischemia-reperfusion injury, the underlying mechanisms are largely u...
متن کاملTargeted deletion of nuclear factor kappaB p50 enhances cardiac remodeling and dysfunction following myocardial infarction.
Myocardial infarction is commonly complicated by left ventricular remodeling, a process that leads to cardiac dilatation, congestive heart failure and death. The innate immune system plays a pivotal role in the remodeling process via nuclear factor (NF)-kappaB activation. The NF-kappaB transcription factor family includes several subunits (p50, p52, p65, c-Rel, and Rel B) that respond to myocar...
متن کاملSurvival and cardiac remodeling after myocardial infarction are critically dependent on the host innate immune interleukin-1 receptor-associated kinase-4 signaling: a regulator of bone marrow-derived dendritic cells.
BACKGROUND The innate immune system greatly contributes to the inflammatory process after myocardial infarction (MI). Interleukin-1 receptor-associated kinase-4 (IRAK-4), downstream of Toll/interleukin-1 receptor signaling, has an essential role in regulating the innate immune response. The present study was designed to determine the mechanism by which IRAK-4 is responsible for the cardiac infl...
متن کاملTargeted deletion of matrix metalloproteinase-9 attenuates left ventricular enlargement and collagen accumulation after experimental myocardial infarction.
Matrix metalloproteinase-9 (MMP-9) is prominently overexpressed after myocardial infarction (MI). We tested the hypothesis that mice with targeted deletion of MMP9 have less left ventricular (LV) dilation after experimental MI than do sibling wild-type (WT) mice. Animals that survived ligation of the left coronary artery underwent echocardiographic studies after MI; all analyses were performed ...
متن کاملDeletion of cardiomyocyte mineralocorticoid receptor ameliorates adverse remodeling after myocardial infarction.
BACKGROUND Mineralocorticoid receptor (MR) blockade improves morbidity and mortality among patients with heart failure; however, the underlying mechanisms are still under investigation. We studied left ventricular remodeling after myocardial infarction in mice with cardiomyocyte-specific inactivation of the MR gene (MR(MLCCre)) that were generated with a conditional MR allele (MR(flox)) in comb...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation
دوره 112 24 شماره
صفحات -
تاریخ انتشار 2005