In situ Growth of NixCu1-x Alloy Nanocatalysts on Redox-reversible Rutile (Nb,Ti)O4 Towards High-Temperature Carbon Dioxide Electrolysis

نویسندگان

  • Haoshan Wei
  • Kui Xie
  • Jun Zhang
  • Yong Zhang
  • Yan Wang
  • Yongqiang Qin
  • Jiewu Cui
  • Jian Yan
  • Yucheng Wu
چکیده

In this paper, we report the in situ growth of Ni(x)Cu(1-x) (x = 0, 0.25, 0.50, 0.75 and 1.0) alloy catalysts to anchor and decorate a redox-reversible Nb1.33Ti0.67O4 ceramic substrate with the aim of tailoring the electrocatalytic activity of the composite materials through direct exsolution of metal particles from the crystal lattice of a ceramic oxide in a reducing atmosphere at high temperatures. Combined analysis using XRD, SEM, EDS, TGA, TEM and XPS confirmed the completely reversible exsolution/dissolution of the Ni(x)Cu(1-x) alloy particles during the redox cycling treatments. TEM results revealed that the alloy particles were exsolved to anchor onto the surface of highly electronically conducting Nb1.33Ti0.67O4 in the form of heterojunctions. The electrical properties of the nanosized Ni(x)Cu(1-x)/Nb1.33Ti0.67O4 were systematically investigated and correlated to the electrochemical performance of the composite electrodes. A strong dependence of the improved electrode activity on the alloy compositions was observed in reducing atmospheres at high temperatures. Direct electrolysis of CO2 at the Ni(x)Cu(1-x)/Nb1.33Ti0.67O4 composite cathodes was investigated in solid-oxide electrolysers. The CO2 splitting rates were observed to be positively correlated with the Ni composition; however, the Ni0.75Cu0.25 combined the advantages of metallic nickel and copper and therefore maximised the current efficiencies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In situ formation of oxygen vacancy in perovskite Sr0.95Ti0.8Nb0.1M0.1O3 (M = Mn, Cr) toward efficient carbon dioxide electrolysis

In this work, redox-active Mn or Cr is introduced to the B site of redox stable perovskite Sr(0.95)Ti(0.9)Nb(0.1)O3.00 to create oxygen vacancies in situ after reduction for high-temperature CO2 electrolysis. Combined analysis using X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy and thermogravimetric analysis confirms the change of the chemical formula fro...

متن کامل

Spatially confined catalysis-enhanced high-temperature carbon dioxide electrolysis.

In this study, a potential ilmenite cathode material Ni0.9TiO3 is designed for efficient CO2 electrolysis in an oxide-ion-conducting solid-oxide electrolyzer. Spatially confined catalysis has been successfully achieved to substantially improve cathode activity by in situ growth of catalytically active nickel nanoparticles on a ceramic skeleton. The combined analysis of XRD, SEM, EDS, XPS, TGA a...

متن کامل

Theoretical study of reduced benzopyran to CO2 by rTiO2-NP

In this study, catalyst of rutile titanium dioxide nanoparticles (rTiO2-NP) has been investigated for the removal and reduction of unburned hydrocarbons as benzopyran. To evaluate and calculate the thermodynamic properties of this aim, pollutants are closed to the nanoparticles and converted them into other products and the carbon dioxide molecules are simulated in the 12th steps. The geometric...

متن کامل

Redox-reversible niobium-doped strontium titanate decorated with in situ grown nickel nanocatalyst for high-temperature direct steam electrolysis.

Composite cathodes based on Sr0.94Ti0.9Nb0.1O3 (STNO) can be utilized for direct steam electrolysis; however, the insufficient electrocatalytic activity limits electrode performance and current efficiency. In this work, redox-reversible (Sr0.94)0.9(Ti0.9Nb0.1)0.9Ni0.1O3 (STNNO) with A-site deficiency and B-site excess has been designed as a cathode material in an oxide-ion-conducting solid oxid...

متن کامل

Determining the Hot Deformation Temperature Range of Medium Carbon Ni-Cr-Mo Low Alloy Steels using Hot Tensile and Hot Torsion Tests

The aim of this study was to investigate the suitable temperature range for hot deformation of three medium carbon Ni-Cr-Mo low alloy steels by hot tensile and hot torsion tests. Hot tensile tests were carried out in the te,prature range of 850-1150°C at a constant strain rate of 0.1 s-1 until fracture. Then, the tensile flow behavior, hot ductility and microstructural evolution of the steels w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014