Comparison of laboratory delignification methods, their selectivity, and impacts on physiochemical characteristics of cellulosic biomass.
نویسندگان
چکیده
Two established delignification methods employing sodium chlorite-acetic acid (SC/AA) and peracetic acid (PAA) are often used, and are reportedly highly selective. However, these reports are mostly for highly recalcitrant and unpretreated softwoods and hardwoods species, and information for less recalcitrant lignocellulosic feedstocks and pretreated biomass is scarce. Furthermore, the effects on cellulose structure are not documented. Thus, in this study, delignification kinetics and selectivity were evaluated when SC/AA and PAA were applied to untreated switchgrass, poplar, corn stover, and pine sawdust; poplar subjected to AFEX, controlled pH, lime, and SO(2) pretreatments; and the cellulose model compounds. Both methods proved effective in removing >90% lignin, but selectivity for lignin and carbohydrates removal was substrate and pretreatment dependent. For untreated biomass, PAA was more selective in removing lignin than SC/AA; however, both methods were less selective for pretreated solids. Cellulose characterizations revealed that PAA had less pronounced impacts on cellulose structure.
منابع مشابه
Delignification of Rice Husk and Production of Bioethanol
Lignocellulose is a generic term for describing the main constituents in most plants, namely cellulose, hemicelluloses, and lignin. Lignocellulose is a complex matrix, comprising many different polysaccharides, phenolic polymers and proteins. Cellulose, the major component of cell walls of land plants, is a glucan polysaccharide containing large reservoirs of energy that provide real potential ...
متن کاملIncreasing cellulose accessibility is more important than removing lignin: a comparison of cellulose solvent-based lignocellulose fractionation and soaking in aqueous ammonia.
While many pretreatments attempt to improve the enzymatic digestibility of biomass by removing lignin, this study shows that improving the surface area accessible to cellulase is a more important factor for achieving a high sugar yield. Here we compared the pretreatment of switchgrass by two methods, cellulose solvent- and organic solvent-based lignocellulose fractionation (COSLIF) and soaking ...
متن کاملChemical composition and enzymatic digestibility of sugarcane clones selected for varied lignin content
BACKGROUND The recalcitrance of lignocellulosic materials is a major limitation for their conversion into fermentable sugars. Lignin depletion in new cultivars or transgenic plants has been identified as a way to diminish this recalcitrance. In this study, we assessed the success of a sugarcane breeding program in selecting sugarcane plants with low lignin content, and report the chemical compo...
متن کاملSO2-ethanol-water (SEW) fractionation of lignocellulosics
Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi Author Mikhail Iakovlev Name of the doctoral dissertation SO2-ethanol-water (SEW) fractionation of lignocellulosics Publisher School of Chemical Technology Unit Department of Forest Products Technology Series Aalto University publication series DOCTORAL DISSERTATIONS 95/2011 Field of research Biorefineries Manuscript submitted 9 May ...
متن کاملEnzymatic hydrolysis of cellulosic biomass
technology was selected as a key area for biomass technology development in the 1980s, and the US Department of Energy (DOE) has actively supported the scale up of ethanol production since the Office of Alcohol Fuels was created in the DOE after the ‘energy crisis’ of the 1970s. Although biological conversion of cellulosic biomass to fuels and chemicals through enzymatic hydrolysis of cellulose...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioresource technology
دوره 130 شماره
صفحات -
تاریخ انتشار 2013