Diversity and evolution of CYCLOIDEA-like TCP genes in relation to flower development in Papaveraceae.

نویسندگان

  • Catherine Damerval
  • Martine Le Guilloux
  • Muriel Jager
  • Céline Charon
چکیده

Monosymmetry evolved several times independently during flower evolution. In snapdragon (Antirrhinum majus), a key gene for monosymmetry is CYCLOIDEA (CYC), which belongs to the class II TCP gene family encoding transcriptional activators. We address the questions of the evolutionary history of this gene family and of possible recruitment of genes homologous to CYC in floral development and symmetry in the Papaveraceae. Two to three members of the class II TCP family were found in each species analyzed, two of which were CYC-like genes, on the basis of the presence of both the TCP and R conserved domains. The duplication that gave rise to these two paralogous lineages (named PAPACYL1 and PAPACYL2) probably predates the divergence of the two main clades within the Papaveraceae. Phylogenetic relationships among angiosperm class II TCP genes indicated that (1) PAPACYL genes were closest to Arabidopsis (Arabidopsis thaliana) AtTCP18, and a duplication at the base of the core eudicot would have given rise to two supplementary CYC-like lineages; and (2) at least three class II TCP genes were present in the ancestor of monocots and eudicots. Semiquantitative reverse transcription-polymerase chain reaction and in situ hybridization approaches in three species with different floral symmetry indicated that both PAPACYL paralogs were expressed during floral development. A pattern common to all three species was observed at organ junctions in inflorescences and flowers. Expression in the outer petals was specifically observed in the two species with nonactinomorphic flowers. Hypotheses concerning the ancestral pattern of expression and function of CYC-like genes and their possible role in floral development of Papaveraceae species leading to bisymmetric buds are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An expanded evolutionary role for flower symmetry genes

CYCLOIDEA (CYC)-like TCP genes are critical for flower developmental patterning. Exciting recent breakthroughs, including a study by Song et al. published in BMC Evolutionary Biology, demonstrate that CYC-like genes have also had an important role in the evolution of flower form.

متن کامل

CEN-like gene from tobacco2 CYC CYCLOIDEA DICH DICHOTOMA KNOX KNOTTED-like homeobox LFY LEAFY PEAFIM PEAFIMBRIATA PI PISTILLATA QTL quantitative trait loci SEP1 SEPALLATA1 TFL1 TERMINAL FLOWER1 UFO UNUSUAL FLORAL ORGANS

Considerable progress has been made in identifying genes that are involved in the evolution of plant morphologies. Elements of the ABC model of flower development are conserved throughout angiosperms, and homologous MADS-box genes function in gymnosperm reproduction. Candidate gene and mapping analyses of floral symmetry, sex determination, inflorescence architecture, and compound leaves provid...

متن کامل

Molecular Cloning and Analysis of Two Flowering Related Genes from Apple (Malus × domestica)

Apple (Malus×domestica Borkh.) is the fourth fruit in importance and Iran ranks fifth in apple production in the world. Longevity of juvenility in apple extends breeding cycles and makes its breeding a tough job. To alleviate this barrier via genetic engineering, the genes involved in flowering and floral development of apple and their function must be identified and characterized. Most of thes...

متن کامل

Evolution and Expression Patterns of TCP Genes in Asparagales

CYCLOIDEA-like genes are involved in the symmetry gene network, limiting cell proliferation in the dorsal regions of bilateral flowers in core eudicots. CYC-like and closely related TCP genes (acronym for TEOSINTE BRANCHED1, CYCLOIDEA, and PROLIFERATION CELL FACTOR) have been poorly studied in Asparagales, the largest order of monocots that includes both bilateral flowers in Orchidaceae (ca. 25...

متن کامل

Evolution of the TCP gene family in Asteridae: cladistic and network approaches to understanding regulatory gene family diversification and its impact on morphological evolution.

In the plant subclass Asteridae, bilaterally symmetrical flowers have evolved from a radially symmetrical ancestral phenotype on at least three independent occasions: in the Boraginaceae, Solanaceae, and Lamiales. Development of bilateral flower symmetry has been shown to be determined by the early-acting cycloidea (cyc) and dichotoma (dich) genes in Antirrhinum, a member of the Lamiales. cyc a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 143 2  شماره 

صفحات  -

تاریخ انتشار 2007