Streptomyces griseus protease C. A novel enzyme of the chymotrypsin superfamily.

نویسندگان

  • S S Sidhu
  • G B Kalmar
  • L G Willis
  • T J Borgford
چکیده

In this report we describe a novel chymotrypsin-like serine protease produced by Streptomyces griseus. The enzyme has been tentatively named S. griseus protease C (SGPC). The gene encoding the enzyme (sprC) was identified and isolated on the basis of its homology to the previously characterized S. griseus protease B (SGPB). The sprC gene encodes a 457-amino acid prepro-mature protein of which only the 255 carboxyl-terminal amino acids are present in the mature enzyme. Mature SGPC contains two distinct domains connected by a 19-amino acid linker region rich in threonines and prolines. While the amino-terminal domain is homologous to S. griseus proteases A, B, and E and the alpha-lytic protease of Lysobacter enzymogenes, the carboxyl-terminal domain is not homologous with any known protease. However, the carboxyl-terminal domain shares extensive homology with chitin-binding domains of Bacillus circulans chitinases A1 and D, suggesting that the enzyme is specialized for the degradation of chitin-linked proteins. Recombinant expression and preliminary characterization of the catalytic properties of the enzyme are also reported. The primary specificity of SGPC is similar to that of SGPB; both enzymes preferentially cleave peptide bonds following large hydrophobic side chains.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Streptomyces griseus protease B: secretion correlates with the length of the propeptide.

Streptomyces griseus protease B, a member of the chymotrypsin superfamily, is encoded by a gene that express a pre-pro-mature protein. During secretion the precursor protein is processed into a mature, fully folded protease. In this study, we constructed a family of genes which encode deletions at the amino-terminal end of the propeptide. The secretion of active protease B was seen to decrease ...

متن کامل

Oxidation of Meloxicam by Streptomyces griseus

The aim of the present investigation was to biotransform the anti-inflammatory compound meloxicam by enzymes present in whole cells of five actinomycete cultures to produce novel bioactive derivatives. Among the actinomycetes screened, Streptomyces griseus NCIM 2622 was found to possess the enzyme system(s) that oxidize meloxicam into two metabolites whereas that present in S. griseus NCIM 2623...

متن کامل

Three chymotrypsin genes are members of the AdpA regulon in the A-factor regulatory cascade in Streptomyces griseus.

AdpA is a key transcriptional activator in the A-factor regulatory cascade in Streptomyces griseus, activating a number of genes required for secondary metabolism and morphological differentiation. Of the five chymotrypsin-type serine protease genes, sprA, sprB, and sprD were transcribed in response to AdpA, showing that these protease genes are members of the AdpA regulon. These proteases were...

متن کامل

Purification and some properties of protease I having transfer action from Streptomyces griseus var. alcalophilus.

Streptomyces griseus var. alcalophilus was selected because it secreted a unique protease (protease I) that catalyzed the transfer reaction forming the hydroxamic acids of various amino acids. Protease I was purified to the electrophoretically homogeneous state and an activity of more than 125-fold that of the culture broth. The molecular weight of the enzyme was estimated to be 25,000 by gel f...

متن کامل

Control of the Streptomyces Subtilisin inhibitor gene by AdpA in the A-factor regulatory cascade in Streptomyces griseus.

AdpA in the A-factor regulatory cascade in Streptomyces griseus activates a number of genes required for secondary metabolism and morphological differentiation, forming an AdpA regulon. The Streptomyces subtilisin inhibitor (SSI) gene, sgiA, in S. griseus was transcribed in response to AdpA, showing that sgiA is a member of the AdpA regulon. AdpA bound a single site upstream of the sgiA promote...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 269 31  شماره 

صفحات  -

تاریخ انتشار 1994