The 203 kbp Mitochondrial Genome of the Phytopathogenic Fungus Sclerotinia borealis Reveals Multiple Invasions of Introns and Genomic Duplications

نویسندگان

  • Andrey V. Mardanov
  • Alexey V. Beletsky
  • Vitaly V. Kadnikov
  • Alexander N. Ignatov
  • Nikolai V. Ravin
چکیده

Here we report the complete sequence of the mitochondrial (mt) genome of the necrotrophic phytopathogenic fungus Sclerotinia borealis, a member of the order Helotiales of Ascomycetes. The 203,051 bp long mtDNA of S. borealis represents one of the largest sequenced fungal mt genomes. The large size is mostly determined by the presence of mobile genetic elements, which include 61 introns. Introns contain a total of 125,394 bp, are scattered throughout the genome, and are found in 12 protein-coding genes and in the ribosomal RNA genes. Most introns contain complete or truncated ORFs that are related to homing endonucleases of the LAGLIDADG and GIY-YIG families. Integrations of mobile elements are also evidenced by the presence of two regions similar to fragments of inverton-like plasmids. Although duplications of some short genome regions, resulting in the appearance of truncated extra copies of genes, did occur, we found no evidences of extensive accumulation of repeat sequences accounting for mitochondrial genome size expansion in some other fungi. Comparisons of mtDNA of S. borealis with other members of the order Helotiales reveal considerable gene order conservation and a dynamic pattern of intron acquisition and loss during evolution. Our data are consistent with the hypothesis that horizontal DNA transfer has played a significant role in the evolution and size expansion of the S. borealis mt genome.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Draft Genome Sequence of Sclerotinia borealis, a Psychrophilic Plant Pathogenic Fungus

Sclerotinia borealis is a necrotrophic phytopathogenic fungus notable for its wide host range and environmental persistence. It grows at low temperatures, causing snow mold disease of crop plants. To understand the molecular mechanisms of its pathogenesis and adaptation to the psychrophilic lifestyle, we determined the 39.3-Mb draft genome sequence of S. borealis F-4128.

متن کامل

The Complete Genome Sequence of the Phytopathogenic Fungus Sclerotinia sclerotiorum Reveals Insights into the Genome Architecture of Broad Host Range Pathogens

Sclerotinia sclerotiorum is a phytopathogenic fungus with over 400 hosts including numerous economically important cultivated species. This contrasts many economically destructive pathogens that only exhibit a single or very few hosts. Many plant pathogens exhibit a “two-speed” genome. So described because their genomes contain alternating gene rich, repeat sparse and gene poor, repeat-rich reg...

متن کامل

Expression Pattern of the Synthetic Pathogen-Inducible Promoter (SynP-FF) in the Transgenic Canola in Response to Sclerotinia sclerotiorum

Sclerotinia sclerotiorum is a phytopathogenic fungus which causes serious yield losses in canola. A pathogen inducible-promoter can facilitate the production of Sclerotinia-resistant transgenic canola plants. Inthis study, the “gain of function approach” was adopted for the construction of a pathogen-inducible promoter.The synthetic promoter technique was used, which involved the in...

متن کامل

The mitochondrial genome of the arbuscular mycorrhizal fungus Gigaspora margarita reveals two unsuspected trans-splicing events of group I introns.

• Arbuscular mycorrhizal fungi (AMF) are ubiquitous organisms that benefit ecosystems through the establishment of an association with the roots of most plants: the mycorrhizal symbiosis. Despite their ecological importance, however, these fungi have been poorly studied at the genome level. • In this study, total DNA from the AMF Gigaspora margarita was subjected to a combination of 454 and Ill...

متن کامل

A Simple Genome Walking Strategy to Isolate Unknown Genomic Regions Using Long Primer and RAPD Primer

Background: Genome walking is a DNA-cloning methodology that is used to isolate unknown genomic regions adjacent to known sequences. However, the existing genome-walking methods have their own limitations. Objectives: Our aim was to provide a simple and efficient genome-walking technology. Material and Methods: In this paper, we dev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014